Testosterone alters testis function through regulation of piRNA expression in rats

Hyo Jin Kang, Min Jung Moon, Hye Young Lee, Sangwon Han

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Piwi-interacting RNAs (piRNAs) play a role in gene silencing of retrotransposons, maintenance of spermatogenesis and maturation in germlines. The piRNA and PIWI protein are essential for fertility. To reveal piRNA function associated with testosterone, we investigated the expression of piRNA and piwi protein in normal male rats and testosterone-treated rats. Normal Sprague–Dawley (SD) rats were randomly selected and sacrificed at neonatal to late adolescence stage stages (2, 9, 16, 20, 24, 28, 35, and 42 days, n = 6 each). Additional SD rats were divided into four groups: group 1 received weekly injections of testosterone enanthate (8 mg/100 g) during 1–3 weeks; group 2 during 3–5 weeks; group 3 during 1–5 weeks; and group 4 was the control (n = 20 each). These animals were sacrificed at an age of 60 days. We investigated piRNA, PIWI, and Ago3 protein levels using real-time PCR, Western blot, and immunohistochemistry in each group. In normal rats, PIWI protein and piRNA were expressed at P24. The expression of PIWI and piRNA gradually increased from adolescence to adulthood on Western blot, real-time PCR and immunohistochemistry. In testosterone-treated rats, the expression of PIWI protein was analyzed by Western blot and shown to be significantly increased in group 1 (neonatal to juvenile injection). In real-time PCR, the expression of piRNA after testosterone treatment was increased in all groups (G1 166.8 ± 2.7; G2 113.3 ± 4.6; G3 70.2 ± 1.5 vs. control, 32.87 ± 2.0, all p < 0.001). The expression of testosterone in adolescence induces the development of male genitourinary organs and spermatogenesis. At the same time, the sexual hormones may activate the piRNA and PIWI protein. Our data demonstrate that patterns of piRNA and PIWI expression are similar to the secretion pattern of testosterone, and that piRNA expression was increased after testosterone treatment. Therefore, testosterone may affect testis function through the regulation of piRNA expression in rats.

Original languageEnglish
Pages (from-to)6729-6735
Number of pages7
JournalMolecular Biology Reports
Volume41
Issue number10
DOIs
Publication statusPublished - 2014 Sep 24

Fingerprint

Small Interfering RNA
Testosterone
Testis
Real-Time Polymerase Chain Reaction
Proteins
Western Blotting
Spermatogenesis
Immunohistochemistry
Retroelements
Injections
Gene Silencing
Fertility
Maintenance
Hormones

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics

Cite this

Kang, Hyo Jin ; Moon, Min Jung ; Lee, Hye Young ; Han, Sangwon. / Testosterone alters testis function through regulation of piRNA expression in rats. In: Molecular Biology Reports. 2014 ; Vol. 41, No. 10. pp. 6729-6735.
@article{57b789f61dca4987a17eef813883a3d0,
title = "Testosterone alters testis function through regulation of piRNA expression in rats",
abstract = "Piwi-interacting RNAs (piRNAs) play a role in gene silencing of retrotransposons, maintenance of spermatogenesis and maturation in germlines. The piRNA and PIWI protein are essential for fertility. To reveal piRNA function associated with testosterone, we investigated the expression of piRNA and piwi protein in normal male rats and testosterone-treated rats. Normal Sprague–Dawley (SD) rats were randomly selected and sacrificed at neonatal to late adolescence stage stages (2, 9, 16, 20, 24, 28, 35, and 42 days, n = 6 each). Additional SD rats were divided into four groups: group 1 received weekly injections of testosterone enanthate (8 mg/100 g) during 1–3 weeks; group 2 during 3–5 weeks; group 3 during 1–5 weeks; and group 4 was the control (n = 20 each). These animals were sacrificed at an age of 60 days. We investigated piRNA, PIWI, and Ago3 protein levels using real-time PCR, Western blot, and immunohistochemistry in each group. In normal rats, PIWI protein and piRNA were expressed at P24. The expression of PIWI and piRNA gradually increased from adolescence to adulthood on Western blot, real-time PCR and immunohistochemistry. In testosterone-treated rats, the expression of PIWI protein was analyzed by Western blot and shown to be significantly increased in group 1 (neonatal to juvenile injection). In real-time PCR, the expression of piRNA after testosterone treatment was increased in all groups (G1 166.8 ± 2.7; G2 113.3 ± 4.6; G3 70.2 ± 1.5 vs. control, 32.87 ± 2.0, all p < 0.001). The expression of testosterone in adolescence induces the development of male genitourinary organs and spermatogenesis. At the same time, the sexual hormones may activate the piRNA and PIWI protein. Our data demonstrate that patterns of piRNA and PIWI expression are similar to the secretion pattern of testosterone, and that piRNA expression was increased after testosterone treatment. Therefore, testosterone may affect testis function through the regulation of piRNA expression in rats.",
author = "Kang, {Hyo Jin} and Moon, {Min Jung} and Lee, {Hye Young} and Sangwon Han",
year = "2014",
month = "9",
day = "24",
doi = "10.1007/s11033-014-3558-y",
language = "English",
volume = "41",
pages = "6729--6735",
journal = "Molecular Biology Reports",
issn = "0301-4851",
publisher = "Springer Netherlands",
number = "10",

}

Testosterone alters testis function through regulation of piRNA expression in rats. / Kang, Hyo Jin; Moon, Min Jung; Lee, Hye Young; Han, Sangwon.

In: Molecular Biology Reports, Vol. 41, No. 10, 24.09.2014, p. 6729-6735.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Testosterone alters testis function through regulation of piRNA expression in rats

AU - Kang, Hyo Jin

AU - Moon, Min Jung

AU - Lee, Hye Young

AU - Han, Sangwon

PY - 2014/9/24

Y1 - 2014/9/24

N2 - Piwi-interacting RNAs (piRNAs) play a role in gene silencing of retrotransposons, maintenance of spermatogenesis and maturation in germlines. The piRNA and PIWI protein are essential for fertility. To reveal piRNA function associated with testosterone, we investigated the expression of piRNA and piwi protein in normal male rats and testosterone-treated rats. Normal Sprague–Dawley (SD) rats were randomly selected and sacrificed at neonatal to late adolescence stage stages (2, 9, 16, 20, 24, 28, 35, and 42 days, n = 6 each). Additional SD rats were divided into four groups: group 1 received weekly injections of testosterone enanthate (8 mg/100 g) during 1–3 weeks; group 2 during 3–5 weeks; group 3 during 1–5 weeks; and group 4 was the control (n = 20 each). These animals were sacrificed at an age of 60 days. We investigated piRNA, PIWI, and Ago3 protein levels using real-time PCR, Western blot, and immunohistochemistry in each group. In normal rats, PIWI protein and piRNA were expressed at P24. The expression of PIWI and piRNA gradually increased from adolescence to adulthood on Western blot, real-time PCR and immunohistochemistry. In testosterone-treated rats, the expression of PIWI protein was analyzed by Western blot and shown to be significantly increased in group 1 (neonatal to juvenile injection). In real-time PCR, the expression of piRNA after testosterone treatment was increased in all groups (G1 166.8 ± 2.7; G2 113.3 ± 4.6; G3 70.2 ± 1.5 vs. control, 32.87 ± 2.0, all p < 0.001). The expression of testosterone in adolescence induces the development of male genitourinary organs and spermatogenesis. At the same time, the sexual hormones may activate the piRNA and PIWI protein. Our data demonstrate that patterns of piRNA and PIWI expression are similar to the secretion pattern of testosterone, and that piRNA expression was increased after testosterone treatment. Therefore, testosterone may affect testis function through the regulation of piRNA expression in rats.

AB - Piwi-interacting RNAs (piRNAs) play a role in gene silencing of retrotransposons, maintenance of spermatogenesis and maturation in germlines. The piRNA and PIWI protein are essential for fertility. To reveal piRNA function associated with testosterone, we investigated the expression of piRNA and piwi protein in normal male rats and testosterone-treated rats. Normal Sprague–Dawley (SD) rats were randomly selected and sacrificed at neonatal to late adolescence stage stages (2, 9, 16, 20, 24, 28, 35, and 42 days, n = 6 each). Additional SD rats were divided into four groups: group 1 received weekly injections of testosterone enanthate (8 mg/100 g) during 1–3 weeks; group 2 during 3–5 weeks; group 3 during 1–5 weeks; and group 4 was the control (n = 20 each). These animals were sacrificed at an age of 60 days. We investigated piRNA, PIWI, and Ago3 protein levels using real-time PCR, Western blot, and immunohistochemistry in each group. In normal rats, PIWI protein and piRNA were expressed at P24. The expression of PIWI and piRNA gradually increased from adolescence to adulthood on Western blot, real-time PCR and immunohistochemistry. In testosterone-treated rats, the expression of PIWI protein was analyzed by Western blot and shown to be significantly increased in group 1 (neonatal to juvenile injection). In real-time PCR, the expression of piRNA after testosterone treatment was increased in all groups (G1 166.8 ± 2.7; G2 113.3 ± 4.6; G3 70.2 ± 1.5 vs. control, 32.87 ± 2.0, all p < 0.001). The expression of testosterone in adolescence induces the development of male genitourinary organs and spermatogenesis. At the same time, the sexual hormones may activate the piRNA and PIWI protein. Our data demonstrate that patterns of piRNA and PIWI expression are similar to the secretion pattern of testosterone, and that piRNA expression was increased after testosterone treatment. Therefore, testosterone may affect testis function through the regulation of piRNA expression in rats.

UR - http://www.scopus.com/inward/record.url?scp=84925377577&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84925377577&partnerID=8YFLogxK

U2 - 10.1007/s11033-014-3558-y

DO - 10.1007/s11033-014-3558-y

M3 - Article

C2 - 24997694

AN - SCOPUS:84925377577

VL - 41

SP - 6729

EP - 6735

JO - Molecular Biology Reports

JF - Molecular Biology Reports

SN - 0301-4851

IS - 10

ER -