The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure

Myung Jin Lee, Jae Sung Kwon, Heng Bo Jiang, Eun Ha Choi, Gyungsoon Park, Kwang Mahn Kim

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)


Titanium is commonly used as a biomaterial for dental implants. In this study, we investigated the antibacterial properties of titanium samples following treatment with a non-thermal atmospheric pressure plasma jet (NTAPPJ) on bacteria with two different cell wall structures, including gram-positive and gram-negative bacteria. The hydrophilicity and surface energy of titanium surfaces were significantly increased after NTAPPJ treatment without altering topographical features. Changes in the chemical composition and reductive potential were observed on the NTAPPJ-treated titanium surfaces. The adhesion and biofilm formation rate of bacteria were significantly reduced on the NTAPPJ-treated titanium surfaces compared with the untreated samples, which was confirmed by fluorescent imaging. Regarding the comparison between gram-positive and gram-negative bacteria, both adhesion and the biofilm formation rate were significantly lower for gram-negative bacteria than gram-positive bacteria on samples treated for longer durations with the NTAPPJ. Transmission electron microscopy imaging showed a comparably more disruptive membrane structure of gram-negative bacteria than gram-positive bacteria on the NTAPPJ-treated surfaces. Our results indicated that the NTAPPJ treatment could be useful for preventing bacterial adhesion and biofilm formation on titanium dental implant surfaces, while the reductive potential on surfaces treated by the NTAPPJ could cause oxidation of bacteria, which could be more sensitive to gram-negative bacteria due to differences in the cell wall structure.

Original languageEnglish
Article number1938
JournalScientific reports
Issue number1
Publication statusPublished - 2019 Dec 1

Bibliographical note

Funding Information:
This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program) 20002402, Development of international standardization for atmospheric pressure low temperature plasma medical devices for healing wounds and dental disease) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (NRF-2016K1A4A3914113).

Publisher Copyright:
© 2019, The Author(s).

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure'. Together they form a unique fingerprint.

Cite this