The effect of a finite focal spot size on location dependent detectability in a fan beam CT system

Byeongjoon Kim, Jongduk Baek

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A finite focal spot size is one of the sources to degrade the resolution performance in a fan beam CT system. In this work, we investigated the effect of the finite focal spot size on signal detectability. For the evaluation, five spherical objects with diameters of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm were used. The optical focal spot size viewed at the iso-center was a 1 mm (height) × 1 mm (width) with a target angle of 7 degrees, corresponding to an 8.21 mm (i.e., 1 mm / sin (7°)) focal spot length. Simulated projection data were acquired using 8 × 8 source lets, and reconstructed by Hanning weighted filtered backprojection. For each spherical object, the detectability was calculated at (0 mm, 0 mm) and (0 mm, 200 mm) using two image quality metrics: pixel signal to noise ratio (SNR) and detection SNR. For all signal sizes, the pixel SNR is higher at the iso-center since the noise variance at the off-center is much higher than that at the iso-center due to the backprojection weightings used in direct fan beam reconstruction. In contrast, detection SNR shows similar values for different spherical objects except 1 mm and 2 mm diameter spherical objects. Overall, the results indicate the resolution loss caused by the finite focal spot size degrades the detection performance, especially for small objects with less than 2 mm diameter.

Original languageEnglish
Title of host publicationMedical Imaging 2017
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Joseph Y. Lo, Thomas G. Flohr
PublisherSPIE
ISBN (Electronic)9781510607095
DOIs
Publication statusPublished - 2017
EventMedical Imaging 2017: Physics of Medical Imaging - Orlando, United States
Duration: 2017 Feb 132017 Feb 16

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10132
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2017: Physics of Medical Imaging
CountryUnited States
CityOrlando
Period17/2/1317/2/16

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'The effect of a finite focal spot size on location dependent detectability in a fan beam CT system'. Together they form a unique fingerprint.

  • Cite this

    Kim, B., & Baek, J. (2017). The effect of a finite focal spot size on location dependent detectability in a fan beam CT system. In T. G. Schmidt, J. Y. Lo, & T. G. Flohr (Eds.), Medical Imaging 2017: Physics of Medical Imaging [1013254] (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10132). SPIE. https://doi.org/10.1117/12.2253981