Abstract
We investigated the bias stress stability of solution-processed indium-gallium-zinc-oxide thin-film transistors (IGZO TFTs) using zinc-tin-oxide (ZTO) as the etch-stopper layer, the so-called dual-active-layered ZTO/IGZO TFT (DALZI TFT). The DALZI TFT can use a low-cost back-channel-etch structure because of the high chemical stability of the upper ZTO layer. The DALZI TFT exhibited only a threshold voltage shift of -1.86 V under negative bias illumination stress (NBIS) conditions (stress time = 1000 s), while the unpassivated IGZO TFT suffered from a threshold voltage shift of -19.59 V under NBIS conditions (stress time = 1000 s). The superior bias stress stability of the DALZI TFT is attributed not only to the densification effect by the multi-stacking process but also to the lower sensitivity to ambient gases (e.g., oxygen and water vapour) due to the low oxygen vacancy in the upper ZTO layer.
Original language | English |
---|---|
Article number | 385104 |
Journal | Journal of Physics D: Applied Physics |
Volume | 47 |
Issue number | 38 |
DOIs | |
Publication status | Published - 2014 Sep 24 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films