The effect of a zinc-tin-oxide layer used as an etch-stopper layer on the bias stress stability of solution-processed indium-gallium-zinc-oxide thin-film transistors

Chul Ho Kim, You Seung Rim, Hyun Jae Kim

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

We investigated the bias stress stability of solution-processed indium-gallium-zinc-oxide thin-film transistors (IGZO TFTs) using zinc-tin-oxide (ZTO) as the etch-stopper layer, the so-called dual-active-layered ZTO/IGZO TFT (DALZI TFT). The DALZI TFT can use a low-cost back-channel-etch structure because of the high chemical stability of the upper ZTO layer. The DALZI TFT exhibited only a threshold voltage shift of -1.86 V under negative bias illumination stress (NBIS) conditions (stress time = 1000 s), while the unpassivated IGZO TFT suffered from a threshold voltage shift of -19.59 V under NBIS conditions (stress time = 1000 s). The superior bias stress stability of the DALZI TFT is attributed not only to the densification effect by the multi-stacking process but also to the lower sensitivity to ambient gases (e.g., oxygen and water vapour) due to the low oxygen vacancy in the upper ZTO layer.

Original languageEnglish
Article number385104
JournalJournal of Physics D: Applied Physics
Volume47
Issue number38
DOIs
Publication statusPublished - 2014 Sep 24

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Cite this