The effect of mold materials on the overlay accuracy of a roll-to-roll imprinting system using UV LED illumination within a transparent mold

Sungwoo Choi, Yunho Kook, Chulho Kim, Soonsung Yoo, Kwon Shik Park, Seok Min Kim, Shinill Kang

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Although several studies on the roll-to-roll (R2R) imprinting process have reported achieving flexible electronics, improving the alignment accuracy in the overlay process of R2R imprinting is recognized as the biggest problem for the commercialization of this technology. For an overlay technique with high alignment accuracy, it is essential to develop a roll mold with high positional accuracy. In this study, a method for fabricating a roll mold with high positional accuracy is proposed by wrapping a thin glass substrate flexible mold around the transparent roll base, because it can provide higher mechanical strength and thermal stability than a conventional polymer substrate. To confirm the usability of the proposed process, the prepared roll mold was used to fabricate a test pattern of thin-film transistor backplane for a rollable display. The positional and overlay accuracy of the roll mold with the proposed thin glass substrate flexible mold were compared with the roll mold with a conventional polymer substrate flexible mold. Large-area transparent flexible molds with a size of 470 × 370 mm were fabricated by an ultraviolet (UV) imprinting process on thin glass and polyethylene terephthalate substrates, and these flexible molds were wrapped around a roll base of 125 mm radius through a precision alignment process. After an anti-adhesion treatment and the wrapping process, the roll mold with the polymer substrate showed a ∼180 μm positional error, whereas the thin glass substrate showed a ∼30 μm positional error. After the overlay process using the R2R imprinting system with the alignment system, an average overlay error of ∼3 μm was obtained when the thin glass flexible wrapped roll mold was used, whereas a ∼22 μm overlay error was obtained when the polymer substrate flexible wrapped roll mold was used.

Original languageEnglish
Article number065004
JournalJournal of Micromechanics and Microengineering
Volume26
Issue number6
DOIs
Publication statusPublished - 2016 Apr 26

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Cite this