Abstract
The features of norbornene (NE) cross-linked polyimide (PI) were investigated as the ratio of the norbornene monomer was varied. The coefficient of thermal expansion and modulus are important parameters of materials used in the microelectronic industry. Therefore, in this study, 5-norbornene-2, 3-dicarboxylic acid (NE) was introduced as a crosslinking agent to increase the thermal stability at elevated temperatures. 4,4′-Benzophenonetetracarboxylic dianhydride was utilized as a dianhydride and 4,4′-diaminodiphenyl ether was introduced as a diamine monomer. By changing the ratio of each monomer, we were able to control the spacing of the chain and ring opening polymerization, which resulted in improved properties. Each sample was thermally cured which led to a ring opening mechanism of the norbornene through the reverse Diels-Alder reaction. Thermal mechanical analysis was utilized to determine the coefficient of thermal expansion and dynamic mechanical analysis was used to determine the storage modulus (ε′) and loss modulus (ε'') of the PI film.
Original language | English |
---|---|
Article number | 42607 |
Journal | Journal of Applied Polymer Science |
Volume | 132 |
Issue number | 41 |
DOIs | |
Publication status | Published - 2015 Nov 1 |
Bibliographical note
Publisher Copyright:© 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42607. © 2015 Wiley Periodicals, Inc.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Surfaces, Coatings and Films
- Polymers and Plastics
- Materials Chemistry