The effect of transverse loading on the ideal tensile strength of face-centered-cubic materials

Duc Tam Ho, Soon Dong Park, Soon Yong Kwon, Tong Seok Han, Sung Youb Kim

Research output: Contribution to journalArticle

4 Citations (Scopus)


We employed the Born-Hill-Milstein elastic-stability theory with the aid of molecular statics and density functional theory simulations to investigate the effect of transverse loading on the ideal tensile strength of six face-centered-cubic materials. The ideal strengths of the materials were found to be largely dependent on the transverse loadings. For the case in which the transverse loadings are symmetric to each other, the ideal strength is determined by a phase transformation from tetragonal to orthorhombic structures induced by elastic instability, and the ideal strength linearly increases or decreases with the applied tensile or compressive loadings, respectively. For asymmetric transverse loadings, the ideal strength decreases with increasing asymmetry of the applied loadings.

Original languageEnglish
Article number26005
Issue number2
Publication statusPublished - 2015 Jul 1


All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this