The effects of topography on the evolution of typhoon saomai (2006) under the influence of tropical storm bopha (2006)

Wook Jang, Hye Yeong Chun

Research output: Contribution to journalArticle

8 Citations (Scopus)


The effects of topography on the evolution of Typhoon Saomai (2006) are investigated by conducting a series of numerical simulations with the Weather Research and Forecasting (WRF) Model using 100%, 75%, 50%, and 25% of terrain heights of the Central Mountain Range (CMR) in Taiwan. Differences in the track and intensity of Typhoon Saomai between the experiments are strongly related to those of Tropical Storm Bopha, which passed Taiwan earlier than the typhoon. In the sensitivity experiments, the higher CMR drifts Bopha more southward, which results in the weakening of Bopha by prohibiting the interaction between the CMR and Bopha, and the flows induced by Bopha force Saomai to propagate along a more southerly track. The higher CMR weakens the easterly flow in the lower troposphere and suppresses the northerly flow in the upper troposphere to the west of Saomai. The resultant weak vertical wind shear keeps warm air near the typhoon center in the upper troposphere, which promotes the intensification of the typhoon. To examine the direct effects of topography on the track and intensity of Saomai, additional simulations involving the removal of Bopha from the initial condition with 100% and 50% of CMR are conducted. The results without Bopha showed that Saomai moves more southward at a slower speed and with greater intensity, due to the stronger northerly wind to the west of Saomai, which was not canceled out by the southerly wind to the east of Bopha, and there is no significant difference in the tracks or intensity with respect to the mountain heights.

Original languageEnglish
Pages (from-to)468-489
Number of pages22
JournalMonthly Weather Review
Issue number2
Publication statusPublished - 2013 Feb 1


All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Cite this