The F-box protein FBXO7 positively regulates bone morphogenetic protein-mediated signaling through Lys-63-specific ubiquitination of neurotrophin receptor-interacting MAGE (NRAGE)

Jengmin Kang, Kwang Chul Chung

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Parkinson's disease (PD) is characterized by progressive midbrain dopaminergic neuron degeneration and the formation of intracellular protein aggregates, referred to as Lewy bodies. F-box only protein 7 (FBXO7) gene mutations are closely associated with progression of the autosomal recessive form of familial PD. FBXO7 encodes a component of Skp1, cullin, F-box ubiquitin ligase complexes; however, its cellular targets, including substrates and regulators, are not yet clarified. To identify potential substrates of FBXO7, we performed a yeast two-hybrid screen of a human fetal brain library and identified neurotrophin receptor-interacting MAGE protein (NRAGE) as a novel FBXO7-binding partner. We found that FBXO7 interacts with NRAGE and mediates Lys-63-linked poly-ubiquitination of NRAGE in mammalian cells. FBXO7 overexpression accelerates formation of NRAGE-TAK1-TAB1 complexes, whereas FBXO7 knockdown correspondingly decreases complex formation. In addition, BMP4 stimulation enhances NRAGE ubiquitination through FBXO7 and facilitates endogenous NRAGE-TAK1-TAB1 complex formation. Furthermore, FBXO7 positively regulates formation of the BMP receptor-NRAGE-TAK1-TAB1 complex, and up-regulates NF-κB activity. Taken together, our results suggest that FBXO7 affects BMP4-mediated signaling through proteasome-independent ubiquitination of NRAGE and augments formation of downstream signaling components.

Original languageEnglish
Pages (from-to)181-195
Number of pages15
JournalCellular and Molecular Life Sciences
Volume72
Issue number1
DOIs
Publication statusPublished - 2015 Jan 1

Fingerprint

F-Box Proteins
Nerve Growth Factor Receptors
Bone Morphogenetic Proteins
Ubiquitination
Cullin Proteins
Bone Morphogenetic Protein Receptors
Receptor-Interacting Protein Serine-Threonine Kinases
Lewy Bodies
Nerve Degeneration
Dopaminergic Neurons
Parkinsonian Disorders
Proteasome Endopeptidase Complex
Ligases
Mesencephalon
Ubiquitin
Protein Binding
Parkinson Disease
Up-Regulation
Yeasts

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Molecular Biology
  • Pharmacology
  • Cellular and Molecular Neuroscience
  • Cell Biology

Cite this

@article{a9ff22ceb294411598679a02c4d7cfa2,
title = "The F-box protein FBXO7 positively regulates bone morphogenetic protein-mediated signaling through Lys-63-specific ubiquitination of neurotrophin receptor-interacting MAGE (NRAGE)",
abstract = "Parkinson's disease (PD) is characterized by progressive midbrain dopaminergic neuron degeneration and the formation of intracellular protein aggregates, referred to as Lewy bodies. F-box only protein 7 (FBXO7) gene mutations are closely associated with progression of the autosomal recessive form of familial PD. FBXO7 encodes a component of Skp1, cullin, F-box ubiquitin ligase complexes; however, its cellular targets, including substrates and regulators, are not yet clarified. To identify potential substrates of FBXO7, we performed a yeast two-hybrid screen of a human fetal brain library and identified neurotrophin receptor-interacting MAGE protein (NRAGE) as a novel FBXO7-binding partner. We found that FBXO7 interacts with NRAGE and mediates Lys-63-linked poly-ubiquitination of NRAGE in mammalian cells. FBXO7 overexpression accelerates formation of NRAGE-TAK1-TAB1 complexes, whereas FBXO7 knockdown correspondingly decreases complex formation. In addition, BMP4 stimulation enhances NRAGE ubiquitination through FBXO7 and facilitates endogenous NRAGE-TAK1-TAB1 complex formation. Furthermore, FBXO7 positively regulates formation of the BMP receptor-NRAGE-TAK1-TAB1 complex, and up-regulates NF-κB activity. Taken together, our results suggest that FBXO7 affects BMP4-mediated signaling through proteasome-independent ubiquitination of NRAGE and augments formation of downstream signaling components.",
author = "Jengmin Kang and Chung, {Kwang Chul}",
year = "2015",
month = "1",
day = "1",
doi = "10.1007/s00018-014-1665-5",
language = "English",
volume = "72",
pages = "181--195",
journal = "Cellular and Molecular Life Sciences",
issn = "1420-682X",
publisher = "Birkhauser Verlag Basel",
number = "1",

}

TY - JOUR

T1 - The F-box protein FBXO7 positively regulates bone morphogenetic protein-mediated signaling through Lys-63-specific ubiquitination of neurotrophin receptor-interacting MAGE (NRAGE)

AU - Kang, Jengmin

AU - Chung, Kwang Chul

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Parkinson's disease (PD) is characterized by progressive midbrain dopaminergic neuron degeneration and the formation of intracellular protein aggregates, referred to as Lewy bodies. F-box only protein 7 (FBXO7) gene mutations are closely associated with progression of the autosomal recessive form of familial PD. FBXO7 encodes a component of Skp1, cullin, F-box ubiquitin ligase complexes; however, its cellular targets, including substrates and regulators, are not yet clarified. To identify potential substrates of FBXO7, we performed a yeast two-hybrid screen of a human fetal brain library and identified neurotrophin receptor-interacting MAGE protein (NRAGE) as a novel FBXO7-binding partner. We found that FBXO7 interacts with NRAGE and mediates Lys-63-linked poly-ubiquitination of NRAGE in mammalian cells. FBXO7 overexpression accelerates formation of NRAGE-TAK1-TAB1 complexes, whereas FBXO7 knockdown correspondingly decreases complex formation. In addition, BMP4 stimulation enhances NRAGE ubiquitination through FBXO7 and facilitates endogenous NRAGE-TAK1-TAB1 complex formation. Furthermore, FBXO7 positively regulates formation of the BMP receptor-NRAGE-TAK1-TAB1 complex, and up-regulates NF-κB activity. Taken together, our results suggest that FBXO7 affects BMP4-mediated signaling through proteasome-independent ubiquitination of NRAGE and augments formation of downstream signaling components.

AB - Parkinson's disease (PD) is characterized by progressive midbrain dopaminergic neuron degeneration and the formation of intracellular protein aggregates, referred to as Lewy bodies. F-box only protein 7 (FBXO7) gene mutations are closely associated with progression of the autosomal recessive form of familial PD. FBXO7 encodes a component of Skp1, cullin, F-box ubiquitin ligase complexes; however, its cellular targets, including substrates and regulators, are not yet clarified. To identify potential substrates of FBXO7, we performed a yeast two-hybrid screen of a human fetal brain library and identified neurotrophin receptor-interacting MAGE protein (NRAGE) as a novel FBXO7-binding partner. We found that FBXO7 interacts with NRAGE and mediates Lys-63-linked poly-ubiquitination of NRAGE in mammalian cells. FBXO7 overexpression accelerates formation of NRAGE-TAK1-TAB1 complexes, whereas FBXO7 knockdown correspondingly decreases complex formation. In addition, BMP4 stimulation enhances NRAGE ubiquitination through FBXO7 and facilitates endogenous NRAGE-TAK1-TAB1 complex formation. Furthermore, FBXO7 positively regulates formation of the BMP receptor-NRAGE-TAK1-TAB1 complex, and up-regulates NF-κB activity. Taken together, our results suggest that FBXO7 affects BMP4-mediated signaling through proteasome-independent ubiquitination of NRAGE and augments formation of downstream signaling components.

UR - http://www.scopus.com/inward/record.url?scp=84925231021&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84925231021&partnerID=8YFLogxK

U2 - 10.1007/s00018-014-1665-5

DO - 10.1007/s00018-014-1665-5

M3 - Article

VL - 72

SP - 181

EP - 195

JO - Cellular and Molecular Life Sciences

JF - Cellular and Molecular Life Sciences

SN - 1420-682X

IS - 1

ER -