The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel

Jeongho Han, Jae Hoon Nam, Young Kook Lee

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

The objective of this study was to investigate the mechanisms of hydrogen embrittlement (HE) in intercritically annealed medium Mn steel. For this purpose, both hot-rolled and cold-rolled Fe-7Mn-0.1C-0.5Si (wt.%) steels were annealed at 640 °C for 30 min. The annealed specimens had a dual-phase microstructure of retained austenite (γR) and ferrite (α) with different morphologies; a lath shape for the hot-rolled and annealed (HRA) specimen and a globular shape for the cold-rolled and annealed (CRA) specimen. Although the difference in microstructural morphology did not influence the H permeation, it significantly affected the HE behavior. The H-charged HRA (HRAH) specimen was fractured by intergranular cracking occurring along the boundaries of prior γ grains by the H-enhanced decohesion (HEDE) mechanism. The intergranular cracking leaved both flat and rugged facets, which appeared at the prior γ grain boundaries without and with γR, respectively. The H-charged CRA (CRAH) specimen was fractured to leave both dimples filled with grains and empty dimples at the fractured surface. The dimples filled with grains were generated by intergranular cracking occurring along the boundaries of γR grains by the HEDE mechanism. The empty dimples were made by intragranular cracking occurring inside the α grains by the H-enhanced local plasticity (HELP) mechanism. The CRAH specimen exhibited a smaller elongation loss than the HRAH specimen because cracks were propagated by frequently changing their direction along the boundaries of nano-sized γR grains or into α grains.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalActa Materialia
Volume113
DOIs
Publication statusPublished - 2016 Jul 1

Fingerprint

Hydrogen embrittlement
Steel
Permeation
Austenite
Plasticity
Ferrite
Elongation
Grain boundaries
Cracks
Microstructure

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Cite this

@article{9cce0a1b72724bdbac39d1c91c31b24f,
title = "The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel",
abstract = "The objective of this study was to investigate the mechanisms of hydrogen embrittlement (HE) in intercritically annealed medium Mn steel. For this purpose, both hot-rolled and cold-rolled Fe-7Mn-0.1C-0.5Si (wt.{\%}) steels were annealed at 640 °C for 30 min. The annealed specimens had a dual-phase microstructure of retained austenite (γR) and ferrite (α) with different morphologies; a lath shape for the hot-rolled and annealed (HRA) specimen and a globular shape for the cold-rolled and annealed (CRA) specimen. Although the difference in microstructural morphology did not influence the H permeation, it significantly affected the HE behavior. The H-charged HRA (HRAH) specimen was fractured by intergranular cracking occurring along the boundaries of prior γ grains by the H-enhanced decohesion (HEDE) mechanism. The intergranular cracking leaved both flat and rugged facets, which appeared at the prior γ grain boundaries without and with γR, respectively. The H-charged CRA (CRAH) specimen was fractured to leave both dimples filled with grains and empty dimples at the fractured surface. The dimples filled with grains were generated by intergranular cracking occurring along the boundaries of γR grains by the HEDE mechanism. The empty dimples were made by intragranular cracking occurring inside the α grains by the H-enhanced local plasticity (HELP) mechanism. The CRAH specimen exhibited a smaller elongation loss than the HRAH specimen because cracks were propagated by frequently changing their direction along the boundaries of nano-sized γR grains or into α grains.",
author = "Jeongho Han and Nam, {Jae Hoon} and Lee, {Young Kook}",
year = "2016",
month = "7",
day = "1",
doi = "10.1016/j.actamat.2016.04.038",
language = "English",
volume = "113",
pages = "1--10",
journal = "Acta Materialia",
issn = "1359-6454",
publisher = "Elsevier Limited",

}

The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. / Han, Jeongho; Nam, Jae Hoon; Lee, Young Kook.

In: Acta Materialia, Vol. 113, 01.07.2016, p. 1-10.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel

AU - Han, Jeongho

AU - Nam, Jae Hoon

AU - Lee, Young Kook

PY - 2016/7/1

Y1 - 2016/7/1

N2 - The objective of this study was to investigate the mechanisms of hydrogen embrittlement (HE) in intercritically annealed medium Mn steel. For this purpose, both hot-rolled and cold-rolled Fe-7Mn-0.1C-0.5Si (wt.%) steels were annealed at 640 °C for 30 min. The annealed specimens had a dual-phase microstructure of retained austenite (γR) and ferrite (α) with different morphologies; a lath shape for the hot-rolled and annealed (HRA) specimen and a globular shape for the cold-rolled and annealed (CRA) specimen. Although the difference in microstructural morphology did not influence the H permeation, it significantly affected the HE behavior. The H-charged HRA (HRAH) specimen was fractured by intergranular cracking occurring along the boundaries of prior γ grains by the H-enhanced decohesion (HEDE) mechanism. The intergranular cracking leaved both flat and rugged facets, which appeared at the prior γ grain boundaries without and with γR, respectively. The H-charged CRA (CRAH) specimen was fractured to leave both dimples filled with grains and empty dimples at the fractured surface. The dimples filled with grains were generated by intergranular cracking occurring along the boundaries of γR grains by the HEDE mechanism. The empty dimples were made by intragranular cracking occurring inside the α grains by the H-enhanced local plasticity (HELP) mechanism. The CRAH specimen exhibited a smaller elongation loss than the HRAH specimen because cracks were propagated by frequently changing their direction along the boundaries of nano-sized γR grains or into α grains.

AB - The objective of this study was to investigate the mechanisms of hydrogen embrittlement (HE) in intercritically annealed medium Mn steel. For this purpose, both hot-rolled and cold-rolled Fe-7Mn-0.1C-0.5Si (wt.%) steels were annealed at 640 °C for 30 min. The annealed specimens had a dual-phase microstructure of retained austenite (γR) and ferrite (α) with different morphologies; a lath shape for the hot-rolled and annealed (HRA) specimen and a globular shape for the cold-rolled and annealed (CRA) specimen. Although the difference in microstructural morphology did not influence the H permeation, it significantly affected the HE behavior. The H-charged HRA (HRAH) specimen was fractured by intergranular cracking occurring along the boundaries of prior γ grains by the H-enhanced decohesion (HEDE) mechanism. The intergranular cracking leaved both flat and rugged facets, which appeared at the prior γ grain boundaries without and with γR, respectively. The H-charged CRA (CRAH) specimen was fractured to leave both dimples filled with grains and empty dimples at the fractured surface. The dimples filled with grains were generated by intergranular cracking occurring along the boundaries of γR grains by the HEDE mechanism. The empty dimples were made by intragranular cracking occurring inside the α grains by the H-enhanced local plasticity (HELP) mechanism. The CRAH specimen exhibited a smaller elongation loss than the HRAH specimen because cracks were propagated by frequently changing their direction along the boundaries of nano-sized γR grains or into α grains.

UR - http://www.scopus.com/inward/record.url?scp=84964592895&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964592895&partnerID=8YFLogxK

U2 - 10.1016/j.actamat.2016.04.038

DO - 10.1016/j.actamat.2016.04.038

M3 - Article

AN - SCOPUS:84964592895

VL - 113

SP - 1

EP - 10

JO - Acta Materialia

JF - Acta Materialia

SN - 1359-6454

ER -