The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells

Yookyung Song, Samin Hong, Yoko Iizuka, Chan Yun Kim, Gong Je Seong

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

PURPOSE: Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro.

METHODS: R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis.

RESULTS: R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK.

CONCLUSIONS: Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-κB and mitogen-activated protein kinase signaling pathways.

Original languageEnglish
Pages (from-to)58-65
Number of pages8
JournalKorean journal of ophthalmology : KJO
Volume29
Issue number1
DOIs
Publication statusPublished - 2015 Feb 1

Fingerprint

Neuroprotective Agents
Oxidative Stress
NF-kappa B
Extracellular Signal-Regulated MAP Kinases
DNA Nucleotidylexotransferase
Uridine
DNA Fragmentation
Apoptosis
maltol
Cell Survival
Phosphotransferases
Western Blotting
Phosphorylation
Panax
JNK Mitogen-Activated Protein Kinases
Coffee
Transferases
Mitogen-Activated Protein Kinases
L-Lactate Dehydrogenase
Starch

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Cite this

Song, Yookyung ; Hong, Samin ; Iizuka, Yoko ; Kim, Chan Yun ; Seong, Gong Je. / The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells. In: Korean journal of ophthalmology : KJO. 2015 ; Vol. 29, No. 1. pp. 58-65.
@article{b591ebe284884838af3362ae859b46c8,
title = "The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells",
abstract = "PURPOSE: Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro.METHODS: R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis.RESULTS: R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71{\%}. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK.CONCLUSIONS: Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-κB and mitogen-activated protein kinase signaling pathways.",
author = "Yookyung Song and Samin Hong and Yoko Iizuka and Kim, {Chan Yun} and Seong, {Gong Je}",
year = "2015",
month = "2",
day = "1",
doi = "10.3341/kjo.2015.29.1.58",
language = "English",
volume = "29",
pages = "58--65",
journal = "Korean journal of ophthalmology : KJO",
issn = "1011-8942",
publisher = "Seoul Kjo",
number = "1",

}

The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells. / Song, Yookyung; Hong, Samin; Iizuka, Yoko; Kim, Chan Yun; Seong, Gong Je.

In: Korean journal of ophthalmology : KJO, Vol. 29, No. 1, 01.02.2015, p. 58-65.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells

AU - Song, Yookyung

AU - Hong, Samin

AU - Iizuka, Yoko

AU - Kim, Chan Yun

AU - Seong, Gong Je

PY - 2015/2/1

Y1 - 2015/2/1

N2 - PURPOSE: Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro.METHODS: R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis.RESULTS: R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK.CONCLUSIONS: Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-κB and mitogen-activated protein kinase signaling pathways.

AB - PURPOSE: Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro.METHODS: R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis.RESULTS: R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK.CONCLUSIONS: Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-κB and mitogen-activated protein kinase signaling pathways.

UR - http://www.scopus.com/inward/record.url?scp=85012833938&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85012833938&partnerID=8YFLogxK

U2 - 10.3341/kjo.2015.29.1.58

DO - 10.3341/kjo.2015.29.1.58

M3 - Article

C2 - 25646062

AN - SCOPUS:85012833938

VL - 29

SP - 58

EP - 65

JO - Korean journal of ophthalmology : KJO

JF - Korean journal of ophthalmology : KJO

SN - 1011-8942

IS - 1

ER -