Abstract
A sudden stratospheric warming (SSW) is an extremely rare event in the Southern Hemisphere (SH), but occurred in early September 2019. From the Antarctic meteor radar (MR) stations, Davis (68.6˚S, 77.9˚E) and King Sejong Station (62.2˚S, 58.8˚W), quasi 10-day oscillations were clearly observed in the zonal mesospheric winds before the central date (DOY 253) of the SSW. From the northern low-latitude Tirupati (13.6˚N, 79.4˚E) MR, a strong wave activity with a period of ∼6 days was detected in the zonal winds right after the central date. This oscillation is also seen in the geopotential height measurements from the Microwave Limb Sounder (MLS) on board the Aura satellite near the Tirupati region. To elucidate the possible source of the quasi 6-day wave (Q6DW), we use a specified dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) constrained by the reanalysis data from the surface to 50 km. The simulation results show that the amplitude of the westward and equatorward propagating Q6DW was enhanced after the SSW central date in the MLT region, and the Q6DW can be attributed to the baroclinic/barotropic instability in the SH high-latitude mesosphere where the divergence of Eliassen-Palm flux occurred. Thus, we suggest that the Q6DW activity observed by the Tirupati MR and MLS originated from the SH high-latitude mesospheric region. Both the observation and the simulation results clearly demonstrate that the 2019 SH SSW affected not only the high-latitude MLT region but also the low-latitude MLT region.
Original language | English |
---|---|
Article number | e2020JA029094 |
Journal | Journal of Geophysical Research: Space Physics |
Volume | 126 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2021 Jun |
Bibliographical note
Funding Information:This work was supported by the Korea Polar Research Institute (PE21020), Incheon, South Korea. Support for the Davis meteor radar data was provided by the Australian Antarctic Program under AAS project 4445. The second author (In‐Sun Song) was supported by the Korea Astronomy and Space Science Institute under the R&D program (Project No. 2021‐1‐850‐05) supervised by the Ministry of Science and ICT. We thank Prof. SVB Rao of S.V. University, Tirupati, India for providing the Tirupati Meteor Radar data.
Publisher Copyright:
© 2021. American Geophysical Union. All Rights Reserved.
All Science Journal Classification (ASJC) codes
- Space and Planetary Science
- Geophysics