Abstract
Reflectivity changes in oxygen-incorporated Ge2Sb 2Te5 (GST) films were investigated via a laser-induced crystallization process. The crystallization process showed that the phase change speed and the laser power required for crystallization become faster and larger in GST films with a characteristic quantity of oxygen. We confirmed that a dominant grain growth mode during the laser crystallization is a major determinant for the speed of phase change in GST films with a characteristic quantity of oxygen. JMA results and changes in surface morphology indicate that the origin of the growth mode change is due to an increase in the number of initial nucleation sites produced in the oxygen-incorporated GST films. After the re-amorphization process, oxygen-incorporated GST films show more rapid and more stable phase change properties than that of GST films.
Original language | English |
---|---|
Pages (from-to) | H471-H476 |
Journal | Journal of the Electrochemical Society |
Volume | 158 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2011 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry