The remedial potential of lycopene in pancreatitis through regulation of autophagy

Suyun Choi, Hyeyoung Kim

Research output: Contribution to journalReview articlepeer-review

14 Citations (Scopus)

Abstract

Autophagy is an evolutionarily conserved process that degrades damaged organelles and recycles macromolecules to support cell survival. However, in certain disease states, dysregulated autophagy can play an important role in cell death. In pancreatitis, the accumulation of autophagic vacuoles and damaged mitochondria and premature activation of trypsinogen are shown in pancreatic acinar cells (PACs), which are the hallmarks of impaired autophagy. Oxidative stress mediates inflammatory signaling and cytokine expression in PACs, and it also causes mitochondrial dysfunction and dysregulated autophagy. Thus, oxidative stress may be a mediator for autophagic impairment in pancreatitis. Lycopene is a natural pigment that contributes to the red color of fruits and vegetables. Due to its antioxidant activity, it inhibited oxidative stress-induced expression of cytokines in experimental models of acute pancreatitis. Lycopene reduces cell death through the activation of 5-AMP-activated protein kinase-dependent autophagy in certain cells. Therefore, lycopene may ameliorate pancreatitis by preventing oxidative stress-induced impairment of autophagy and/or by directly activating autophagy in PACs.

Original languageEnglish
Article number5775
Pages (from-to)1-19
Number of pages19
JournalInternational journal of molecular sciences
Volume21
Issue number16
DOIs
Publication statusPublished - 2020 Aug 2

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'The remedial potential of lycopene in pancreatitis through regulation of autophagy'. Together they form a unique fingerprint.

Cite this