The Road to Know-Where: An Object-and-Room Informed Sequential BERT for Indoor Vision-Language Navigation

Yuankai Qi, Zizheng Pan, Yicong Hong, Ming Hsuan Yang, Anton van den Hengel, Qi Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Citations (Scopus)

Abstract

Vision-and-Language Navigation (VLN) requires an agent to find a path to a remote location on the basis of natural-language instructions and a set of photo-realistic panoramas. Most existing methods take the words in the instructions and the discrete views of each panorama as the minimal unit of encoding. However, this requires a model to match different nouns (e.g., TV, table) against the same input view feature. In this work, we propose an object-informed sequential BERT to encode visual perceptions and linguistic instructions at the same fine-grained level, namely objects and words. Our sequential BERT also enables the visual-textual clues to be interpreted in light of the temporal context, which is crucial to multi-round VLN tasks. Additionally, we enable the model to identify the relative direction (e.g., left/right/front/back) of each navigable location and the room type (e.g., bedroom, kitchen) of its current and final navigation goal, as such information is widely mentioned in instructions implying the desired next and final locations. We thus enable the model to know-where the objects lie in the images, and to know-where they stand in the scene. Extensive experiments demonstrate the effectiveness compared against several state-of-the-art methods on three indoor VLN tasks: REVERIE, NDH, and R2R. Project repository: https://github.com/YuankaiQi/ORIST.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1635-1644
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 2021 Oct 112021 Oct 17

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period21/10/1121/10/17

Bibliographical note

Funding Information:
This work is supported in part by the ARC DE190100539 and the NSF CAREER Grant #1149783.

Publisher Copyright:
© 2021 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'The Road to Know-Where: An Object-and-Room Informed Sequential BERT for Indoor Vision-Language Navigation'. Together they form a unique fingerprint.

Cite this