Abstract
The ribosomal protein S17E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. S17E is a 62-residue protein conserved in archaea and eukaryotes and has no counterparts in bacteria. Mammalian S17E is a phosphoprotein component of eukaryotic ribosomes. Archaeal S17E proteins range from 59 to 79 amino acids, and are about half the length of the eukaryotic homologs which have an additional C-terminal region. Here we report the three-dimensional solution structure of S17E. S17E folds into a small three-helix bundle strikingly similar to the FF domain of human HYPA/FBP11, a novel phosphopeptide-binding fold. S17E bears a conserved positively charged surface acting as a robust scaffold for molecular recognition. The structure of M. thermoautotrophicum S17E provides a template for homology modeling of eukaryotic S17E proteins in the family. Published by Cold Spring Harbor Laboratory Press.
Original language | English |
---|---|
Pages (from-to) | 583-588 |
Number of pages | 6 |
Journal | Protein Science |
Volume | 17 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2008 Mar |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology