The Visual Object Tracking VOT2017 Challenge Results

Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Luka Čehovin Zajc, Tomáš Vojír, Gustav Häger, Alan Lukežič, Abdelrahman Eldesokey, Gustavo Fernández, Álvaro García-Martín, A. Muhic, Alfredo Petrosino, Alireza Memarmoghadam, Andrea Vedaldi, Antoine Manzanera, Antoine Tran, Aydin Alatan, Bogdan MocanuBoyu Chen, Chang Huang, Changsheng Xu, Chong Sun, Dalong Du, David Zhang, Dawei Du, Deepak Mishra, Erhan Gundogdu, Erik Velasco-Salido, Fahad Shahbaz Khan, Francesco Battistone, Gorthi R.K.Sai Subrahmanyam, Goutam Bhat, Guan Huang, Guilherme Bastos, Guna Seetharaman, Hongliang Zhang, Houqiang Li, Huchuan Lu, Isabela Drummond, Jack Valmadre, Jae Chan Jeong, Jae Il Cho, Jae Yeong Lee, Jana Noskova, Jianke Zhu, Jin Gao, Jingyu Liu, Ji Wan Kim, João F. Henriques, José M. Martínez, Junfei Zhuang, Junliang Xing, Junyu Gao, Kai Chen, Kannappan Palaniappan, Karel Lebeda, Ke Gao, Kris M. Kitani, Lei Zhang, Lijun Wang, Lingxiao Yang, Longyin Wen, Luca Bertinetto, Mahdieh Poostchi, Martin Danelljan, Matthias Mueller, Mengdan Zhang, Ming Hsuan Yang, Nianhao Xie, Ning Wang, Ondrej Miksik, P. Moallem, M. Pallavi Venugopal, Pedro Senna, Philip H.S. Torr, Qiang Wang, Qifeng Yu, Qingming Huang, Rafael Martín-Nieto, Richard Bowden, Risheng Liu, Ruxandra Tapu, Simon Hadfield, Siwei Lyu, Stuart Golodetz, Sunglok Choi, Tianzhu Zhang, Titus Zaharia, Vincenzo Santopietro, Wei Zou, Weiming Hu, Wenbing Tao, Wenbo Li, Wengang Zhou, Xianguo Yu, Xiao Bian, Yang Li, Yifan Xing, Yingruo Fan, Zheng Zhu, Zhipeng Zhang, Zhiqun He

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    400 Citations (Scopus)

    Abstract

    The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative. Results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years. The evaluation included the standard VOT and other popular methodologies and a new 'real-time' experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The VOT2017 goes beyond its predecessors by (i) improving the VOT public dataset and introducing a separate VOT2017 sequestered dataset, (ii) introducing a realtime tracking experiment and (iii) releasing a redesigned toolkit that supports complex experiments. The dataset, the evaluation kit and the results are publicly available at the challenge website1.

    Original languageEnglish
    Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages1949-1972
    Number of pages24
    ISBN (Electronic)9781538610343
    DOIs
    Publication statusPublished - 2017 Jul 1
    Event16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, Italy
    Duration: 2017 Oct 222017 Oct 29

    Publication series

    NameProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
    Volume2018-January

    Other

    Other16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
    Country/TerritoryItaly
    CityVenice
    Period17/10/2217/10/29

    All Science Journal Classification (ASJC) codes

    • Computer Science Applications
    • Computer Vision and Pattern Recognition

    Fingerprint

    Dive into the research topics of 'The Visual Object Tracking VOT2017 Challenge Results'. Together they form a unique fingerprint.

    Cite this