The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.)

Yun Ju Kim, Jee Eun Kim, Jae Hoon Lee, Myoung Hui Lee, Ho Won Jung, Young Yil Bahk, Byung Kook Hwang, Inhwan Hwang, Woo Taek Kim

Research output: Contribution to journalArticle

61 Citations (Scopus)

Abstract

Phosphoinositide-specific phospholipase C (PI-PLC) catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate and diacylglycerol, both of which act as secondary messengers in animal cells. In this report, we identified in Vigna radiata L. (mung bean) three distinct partial cDNAs (pVr-PLC1, pVr-PLC2, and pVr-PLC3), which encode forms of putative PI-PLC. All three Vr-PLC genes were transcriptionally active and displayed unique patterns of expression. The Vr-PLC1 and Vr-PLC2 transcripts were constitutively expressed to varying degrees in every tissue of mung bean plants examined. In contrast, the Vr-PLC3 mRNA level was very low under normal growth conditions and was rapidly induced in an abscisic acid-independent manner under environmental stress conditions (drought and high salinity). An isolated genomic clone, about 8.2 kb in length, showed that Vr-PLC1 and Vr-PLC3 are in tandem array in the mung bean genome. The predicted primary sequence of Vr-PLC3 (Mr=67.4 kDa) is reminiscent of the δ-isoform of animal enzymes which contain core sequences found in typical PI-PLCs, such as the catalytic domain comprising X and Y motifs, a lipid-binding C2 domain, and the less conserved EF-hand domain. Results of in vivo targeting experiment using a green fluorescent protein (GFP) showed that the GFP-Vr-PLC3 fusion protein was localized primarily to the plasma membrane of the Arabidopsis protoplast. The C2 domain was essential for Vr-PLC3 to be targeted to the plasma membrane. The possible biological functions of stress-responsive Vr-PLC3 in mung bean plants are discussed.

Original languageEnglish
Pages (from-to)127-136
Number of pages10
JournalFEBS Letters
Volume556
Issue number1-3
DOIs
Publication statusPublished - 2004 Jan 2

Fingerprint

Phosphoinositide Phospholipase C
Type C Phospholipases
Cell membranes
Phosphatidylinositols
Genes
Cell Membrane
Programmable logic controllers
Green Fluorescent Proteins
Animals
Abscisic Acid
Inositol 1,4,5-Trisphosphate
Drought
Diglycerides
Hydrolysis
Protein Isoforms
EF Hand Motifs
Fusion reactions
Complementary DNA
Cells
Tissue

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

Kim, Yun Ju ; Kim, Jee Eun ; Lee, Jae Hoon ; Lee, Myoung Hui ; Jung, Ho Won ; Bahk, Young Yil ; Hwang, Byung Kook ; Hwang, Inhwan ; Kim, Woo Taek. / The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). In: FEBS Letters. 2004 ; Vol. 556, No. 1-3. pp. 127-136.
@article{c43a2233cbcc4fac9a79cea3ffe063ec,
title = "The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.)",
abstract = "Phosphoinositide-specific phospholipase C (PI-PLC) catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate and diacylglycerol, both of which act as secondary messengers in animal cells. In this report, we identified in Vigna radiata L. (mung bean) three distinct partial cDNAs (pVr-PLC1, pVr-PLC2, and pVr-PLC3), which encode forms of putative PI-PLC. All three Vr-PLC genes were transcriptionally active and displayed unique patterns of expression. The Vr-PLC1 and Vr-PLC2 transcripts were constitutively expressed to varying degrees in every tissue of mung bean plants examined. In contrast, the Vr-PLC3 mRNA level was very low under normal growth conditions and was rapidly induced in an abscisic acid-independent manner under environmental stress conditions (drought and high salinity). An isolated genomic clone, about 8.2 kb in length, showed that Vr-PLC1 and Vr-PLC3 are in tandem array in the mung bean genome. The predicted primary sequence of Vr-PLC3 (Mr=67.4 kDa) is reminiscent of the δ-isoform of animal enzymes which contain core sequences found in typical PI-PLCs, such as the catalytic domain comprising X and Y motifs, a lipid-binding C2 domain, and the less conserved EF-hand domain. Results of in vivo targeting experiment using a green fluorescent protein (GFP) showed that the GFP-Vr-PLC3 fusion protein was localized primarily to the plasma membrane of the Arabidopsis protoplast. The C2 domain was essential for Vr-PLC3 to be targeted to the plasma membrane. The possible biological functions of stress-responsive Vr-PLC3 in mung bean plants are discussed.",
author = "Kim, {Yun Ju} and Kim, {Jee Eun} and Lee, {Jae Hoon} and Lee, {Myoung Hui} and Jung, {Ho Won} and Bahk, {Young Yil} and Hwang, {Byung Kook} and Inhwan Hwang and Kim, {Woo Taek}",
year = "2004",
month = "1",
day = "2",
doi = "10.1016/S0014-5793(03)01388-7",
language = "English",
volume = "556",
pages = "127--136",
journal = "FEBS Letters",
issn = "0014-5793",
publisher = "Elsevier",
number = "1-3",

}

The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). / Kim, Yun Ju; Kim, Jee Eun; Lee, Jae Hoon; Lee, Myoung Hui; Jung, Ho Won; Bahk, Young Yil; Hwang, Byung Kook; Hwang, Inhwan; Kim, Woo Taek.

In: FEBS Letters, Vol. 556, No. 1-3, 02.01.2004, p. 127-136.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.)

AU - Kim, Yun Ju

AU - Kim, Jee Eun

AU - Lee, Jae Hoon

AU - Lee, Myoung Hui

AU - Jung, Ho Won

AU - Bahk, Young Yil

AU - Hwang, Byung Kook

AU - Hwang, Inhwan

AU - Kim, Woo Taek

PY - 2004/1/2

Y1 - 2004/1/2

N2 - Phosphoinositide-specific phospholipase C (PI-PLC) catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate and diacylglycerol, both of which act as secondary messengers in animal cells. In this report, we identified in Vigna radiata L. (mung bean) three distinct partial cDNAs (pVr-PLC1, pVr-PLC2, and pVr-PLC3), which encode forms of putative PI-PLC. All three Vr-PLC genes were transcriptionally active and displayed unique patterns of expression. The Vr-PLC1 and Vr-PLC2 transcripts were constitutively expressed to varying degrees in every tissue of mung bean plants examined. In contrast, the Vr-PLC3 mRNA level was very low under normal growth conditions and was rapidly induced in an abscisic acid-independent manner under environmental stress conditions (drought and high salinity). An isolated genomic clone, about 8.2 kb in length, showed that Vr-PLC1 and Vr-PLC3 are in tandem array in the mung bean genome. The predicted primary sequence of Vr-PLC3 (Mr=67.4 kDa) is reminiscent of the δ-isoform of animal enzymes which contain core sequences found in typical PI-PLCs, such as the catalytic domain comprising X and Y motifs, a lipid-binding C2 domain, and the less conserved EF-hand domain. Results of in vivo targeting experiment using a green fluorescent protein (GFP) showed that the GFP-Vr-PLC3 fusion protein was localized primarily to the plasma membrane of the Arabidopsis protoplast. The C2 domain was essential for Vr-PLC3 to be targeted to the plasma membrane. The possible biological functions of stress-responsive Vr-PLC3 in mung bean plants are discussed.

AB - Phosphoinositide-specific phospholipase C (PI-PLC) catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate and diacylglycerol, both of which act as secondary messengers in animal cells. In this report, we identified in Vigna radiata L. (mung bean) three distinct partial cDNAs (pVr-PLC1, pVr-PLC2, and pVr-PLC3), which encode forms of putative PI-PLC. All three Vr-PLC genes were transcriptionally active and displayed unique patterns of expression. The Vr-PLC1 and Vr-PLC2 transcripts were constitutively expressed to varying degrees in every tissue of mung bean plants examined. In contrast, the Vr-PLC3 mRNA level was very low under normal growth conditions and was rapidly induced in an abscisic acid-independent manner under environmental stress conditions (drought and high salinity). An isolated genomic clone, about 8.2 kb in length, showed that Vr-PLC1 and Vr-PLC3 are in tandem array in the mung bean genome. The predicted primary sequence of Vr-PLC3 (Mr=67.4 kDa) is reminiscent of the δ-isoform of animal enzymes which contain core sequences found in typical PI-PLCs, such as the catalytic domain comprising X and Y motifs, a lipid-binding C2 domain, and the less conserved EF-hand domain. Results of in vivo targeting experiment using a green fluorescent protein (GFP) showed that the GFP-Vr-PLC3 fusion protein was localized primarily to the plasma membrane of the Arabidopsis protoplast. The C2 domain was essential for Vr-PLC3 to be targeted to the plasma membrane. The possible biological functions of stress-responsive Vr-PLC3 in mung bean plants are discussed.

UR - http://www.scopus.com/inward/record.url?scp=0346725028&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0346725028&partnerID=8YFLogxK

U2 - 10.1016/S0014-5793(03)01388-7

DO - 10.1016/S0014-5793(03)01388-7

M3 - Article

C2 - 14706839

AN - SCOPUS:0346725028

VL - 556

SP - 127

EP - 136

JO - FEBS Letters

JF - FEBS Letters

SN - 0014-5793

IS - 1-3

ER -