Abstract
Muscle atrophy is defined as the decrease in the size and number of muscle fibers, and is associated with injury to muscle structures. Recently, biophysical therapies using laser, ultrasound, and vibration has been widely used to improve muscle atrophy. However, although the effects of these stimuli seem to be similar, the mechanisms by which they stimulate biological tissue may be different. From this point of view, we expected that it would be possible to produce synergetic effects through combining these three different types of biophysical stimuli on biological tissues, based on the therapeutic benefit of each stimulus. For this, 35 males, 12-week old, C57BL/6 mice (21 ± 1.2 g), were randomly assigned to five groups: a) a sciatic nerve neurectomized “control” group (C, n = 7), b) a MILNS (Minimally Invasive Laser Needle System) therapy after sciatic nerve neurectomized group (L, n = 7), c) a LIPUS (Low-Intensity Pulsed Ultrasound) therapy after sciatic nerve neurectomized group (U, n = 7), e) a PVS (Partial Vibration Stimulation) therapy after sciatic nerve neurectomized group (V, n = 7), and e) a multimodal biophysical stimulation after sciatic nerve neurectomized group (MS, n = 7).
Original language | English |
---|---|
Pages (from-to) | 1553-1560 |
Number of pages | 8 |
Journal | International Journal of Precision Engineering and Manufacturing |
Volume | 19 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2018 Oct 1 |
Bibliographical note
Funding Information:This work was supported (in part) by the Yonsei University Future-leading Research Initiative of 2015 (2017-22-0143).
Publisher Copyright:
© 2018, Korean Society for Precision Engineering and Springer-Verlag GmbH Germany, part of Springer Nature.
All Science Journal Classification (ASJC) codes
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Electrical and Electronic Engineering