Thermal expansion of the superhydrated small-pore zeolite natrolite

Yongjae Lee, Chi Chang Kao, Thomas Vogt

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Natrolite (Na 16Al 16Si 24O 80·16H 2O) at ambient conditions is the paradigmatic example of an auxetic material whose behavior under pressure can be rationalized using a "rotating squares" model with the squares being made up of T 5O 10 subunits (T = Al, Si). This model also rationalizes reversible superhydration where water is inserted under pressure ("pressure-induced hydration"). Using combined pressure and temperature in situ synchrotron powder diffraction techniques, we have investigated the structural changes occurring in "superhydrated" natrolite (Na 16Al 16Si 24O 80· 32H 2O) between 20 and 300 K at 1.7(3) GPa. Rietveld refinements allowed us to identify significant changes within the sodium-water substructure located in the pores of the superhydrated natrolite. Despite the higher water content of the superhydrated phase, its thermal volumetric expansion coefficient is 15 times larger than that of natrolite at ambient pressure. We put forward a structural descriptor relating thermal expansion and the rotations of T 5O 10 units that measures the impact of nonframework cations and water contained in the pores on the "rotational squares" mechanism.

Original languageEnglish
Pages (from-to)3286-3291
Number of pages6
JournalJournal of Physical Chemistry C
Volume116
Issue number5
DOIs
Publication statusPublished - 2012 Feb 9

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Cite this