Thermo-mechanical analysis of an internal cooling system with various configurations of a combustion liner after shell

Hokyu Moon, Kyung Min Kim, Jun Su Park, Beom Seok Kim, Hyung Hee Cho

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


The after-shell section, which is part of the gas turbine combustion liner, is exposed to the hottest combustion gas. Various cooling schemes have been applied to protect against severe thermal load. However, there is a significant discrepancy in the thermal expansion with large temperature differences, resulting in thermo-mechanical crack formation. In this study, to reduce combustion liner damage, thermo-mechanical analysis was conducted on three after-shell section configurations: inline-discrete divider wall, staggered divider wall, and swirler wall arrays. These array components are well-known heat-transfer enhancement structures in the duct. In the numerical analyses, the heat transfer characteristics, temperature and thermo-mechanical stress distribution were evaluated using finite volume method and finite element method commercial codes. As a result, we demonstrated that the temperature and the thermo-mechanical stress distribution were readily dependent on the structural array for cooling effectiveness and structural support in each modified cooling system. Compared with the reference model, the swirler wall array was most effective in diminishing the thermo-mechanical stress concentration, especially on the inner ring that is vulnerable to crack formation.

Original languageEnglish
Pages (from-to)1779-1790
Number of pages12
JournalHeat and Mass Transfer/Waerme- und Stoffuebertragung
Issue number12
Publication statusPublished - 2015 Dec 1

Bibliographical note

Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Thermo-mechanical analysis of an internal cooling system with various configurations of a combustion liner after shell'. Together they form a unique fingerprint.

Cite this