Three-dimensional finite element analysis of the deformation of the human mandible: A preliminary study from the perspective of orthodontic mini-implant stability

Sun Hye Baek, Hyun Suk Cha, Jung Yul Cha, Yoon Shik Moon, Sang Jin Sung

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Objective: The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI). Methods: Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g). Results: Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [μE]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 μE). Conclusions: The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability.

Original languageEnglish
Pages (from-to)159-168
Number of pages10
JournalKorean Journal of Orthodontics
Volume42
Issue number4
DOIs
Publication statusPublished - 2012 Aug

All Science Journal Classification (ASJC) codes

  • Orthodontics

Fingerprint

Dive into the research topics of 'Three-dimensional finite element analysis of the deformation of the human mandible: A preliminary study from the perspective of orthodontic mini-implant stability'. Together they form a unique fingerprint.

Cite this