Abstract
A nitrogen-doped hollow carbon fiber was prepared using polydopamine and electrospun polystyrene fibers as a sacrificial template for the oxygen electrode of Li-O2 batteries. Owing to the fiber structure, a binder is not needed to fabricate the electrode, which eliminates the possibility of side reactions associated with a binder. It was demonstrated that the hollow tubular structure with a large inner diameter is highly effective for accommodating a substantial amount of discharge products without hindering the mass transfer of reactants, even under the fully discharged condition. The reversibility and rate capability were improved by optimizing the length of the fiber. The nitrogen-doped carbon reduced the overall overpotential between the oxygen reduction and oxygen evolution reactions. Therefore, the nitrogen-doped hollow carbon fiber can be used to obtain a highly effective oxygen electrode for Li-O2 batteries.
Original language | English |
---|---|
Pages (from-to) | A3425-A3431 |
Journal | Journal of the Electrochemical Society |
Volume | 166 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Funding Information:This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded from the Ministry of Education (NRF-2019R1A6A1A11055660) and by a National Research Foundation (NRF) grant funded from the Ministry of Science, ICT, and Future Planning (NRF-2018M3A7B4071535) and the Hyundai Motor Company.
Publisher Copyright:
© The Electrochemical Society
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry