Tip-To-Middle Anisotropic MOF-On-MOF Growth with a Structural Adjustment

Gihyun Lee, Sujeong Lee, Sojin Oh, Dooyoung Kim, Moonhyun Oh

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

Well-organized construction of hybrid metal-organic frameworks (MOFs) with complicated structures or components is a great importance because of their potential usefulness. In this regard, the conjugation of more than two MOFs, which have dissimilar components and/or structures, is a smart strategy for the production of hybrid MOFs. MOF-on-MOF growth is fundamental for the conjugation of two MOFs and should be deeply understood for the finely controlled conjugation and for the formation of well-organized hybrid MOFs. Herein, we report an interesting MOF growth process for the construction of hybrid MOF particles containing heterogeneous components and cell lattices. Interestingly, even though a newly grown MOF and an MOF template have mismatched cell lattices, the anisotropic growth results in unexpectedly well-defined core-shell-type hybrid MOFs. Comprehensive monitoring of the growth process revealed a tip-to-middle MOF-on-MOF growth, which elucidates the uncommon formation of a well-defined core-shell hybrid despite the anisotropic growth. A tip-to-middle anisotropic growth process is accompanied by self-adjustment of MOF cell lattices to anchor on the template surface having mismatched cell lattices in the early reaction stage and self-reversion of cell lattices to the original comfortable configuration in the middle stage of the reaction.

Original languageEnglish
Pages (from-to)3042-3049
Number of pages8
JournalJournal of the American Chemical Society
Volume142
Issue number6
DOIs
Publication statusPublished - 2020 Feb 12

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. NRF-2017R1A2B3007271).

Publisher Copyright:
© 2020 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Tip-To-Middle Anisotropic MOF-On-MOF Growth with a Structural Adjustment'. Together they form a unique fingerprint.

Cite this