Abstract
In this work, we propose a temporal aggregation scheme for sentiments expressed in social networks. The proposed method discounts for the bias caused in aggregation due to classification errors while providing confidence intervals. A computationally efficient prediction and interpolation scheme of temporal progression is discussed that accounts for the heteroscedastic nature of noise. To this end, we use a heteroscedastic gaussian process model. To test the efficacy of our proposed method, we use tweets about Donald Trump obtained for a period of twelve hours. The results are generalized using six state of art classification schemes for predicting sentiments. Our method shows improvement in R2 statistics with better coverage under proposed uncertainty for all the six classification schemes. Finally, the results of variational heteroscedastic gaussian process (VHGP) regression are discussed and the normalized mean square error with negative log-probabilty density of the prediction are reported. It is further shown that the volatility of opinion tracking in social network data streams is better captured with a heteroscedastic noise model.
Original language | English |
---|---|
Title of host publication | Proceedings - 2016 IEEE 10th International Conference on Semantic Computing, ICSC 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 346-349 |
Number of pages | 4 |
ISBN (Electronic) | 9781509006618 |
DOIs | |
Publication status | Published - 2016 Mar 22 |
Event | 10th IEEE International Conference on Semantic Computing, ICSC 2016 - Laguna Hills, United States Duration: 2016 Feb 3 → 2016 Feb 5 |
Publication series
Name | Proceedings - 2016 IEEE 10th International Conference on Semantic Computing, ICSC 2016 |
---|
Other
Other | 10th IEEE International Conference on Semantic Computing, ICSC 2016 |
---|---|
Country/Territory | United States |
City | Laguna Hills |
Period | 16/2/3 → 16/2/5 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Computer Networks and Communications
- Information Systems