Transfer-Printed Cuprous Iodide (CuI) Hole Transporting Layer for Low Temperature Processed Perovskite Solar Cells

Ravi P. Srivastava, Hyun Suh Jung, Dahl Young Khang

Research output: Contribution to journalArticlepeer-review

Abstract

Perovskite solar cells (PSCs) have achieved significantly high power-conversion efficiency within a short time. Most of the devices, including those with the highest efficiency, are based on a n–i–p structure utilizing a (doped) spiro-OMeTAD hole transport layer (HTL), which is an expensive material. Furthermore, doping has its own challenges affecting the processing and performance of the devices. Therefore, the need for low-cost, dopant-free hole transport materials is an urgent and critical issue for the commercialization of PSCs. In this study, n–i–p structure PSCs were fabricated in an ambient environment with cuprous iodide (CuI) HTL, employing a novel transfer-printing technique, in order to avoid the harmful interaction between the perovskite surface and the solvents of CuI. Moreover, in fabricated PSCs, the SnO2 electron transport layer (ETL) has been incorporated to reduce the processing temperature, as previously reported (n–i–p) devices with CuI HTL are based on TiO2, which is a high-temperature processed ETL. PSCs fabricated at 80 °C transfer-printing temperature with 20 nm iodized copper, under 1 sun illumination showed a promising efficiency of 8.3%, (Jsc and FF; 19.3 A/cm2 and 53.8%), which is comparable with undoped spiro-OMeTAD PSCs and is the highest among the ambient-environment-fabricated PSCs utilizing CuI HTL.

Original languageEnglish
Article number1467
JournalNanomaterials
Volume12
Issue number9
DOIs
Publication statusPublished - 2022 May 1

Bibliographical note

Funding Information:
Funding: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, South Korea (NRF-2019R1A6A1A11055660.

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Transfer-Printed Cuprous Iodide (CuI) Hole Transporting Layer for Low Temperature Processed Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this