Translation of 1D inverse fourier transform of k-space to an image based on deep learning for accelerating magnetic resonance imaging

Taejoon Eo, Hyungseob Shin, Taeseong Kim, Yohan Jun, Dosik Hwang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

To reconstruct magnetic resonance (MR) images from undersampled Cartesian k-space data, we propose an algorithm based on two deep-learning architectures: (1) a multi-layer perceptron (MLP) that estimates a target image from 1D inverse Fourier transform (IFT) of k-space; and (2) a convolutional neural network (CNN) that estimates the target image from the estimated image of the MLP. The MLP learns the relationship between 1D IFT of undersampled k-space which is transformed along the frequency-encoding direction and the target fully-sampled image. The MLP is trained line by line rather than by a whole image, because each frequency-encoding line of the 1D IFT of k-space is not correlated with each other. It can dramatically decrease the number of parameters to be learned because the number of input/output pixels decrease from N2 to N. The next CNN learns the relationship between an estimated image of the MLP and the target fully-sampled image to reduce remaining artifacts in the image domain. The proposed deep-learning algorithm (i.e., the combination of the MLP and the CNN) exhibited superior performance over a single MLP and a single CNN. And it outperformed the comparison algorithms including CS-MRI, DL-MRI, a CNN-based algorithm (denoted as Wang’s algorithm), PANO, and FDLCP in both qualitative and quantitative evaluation. Consequently, the proposed algorithm is applicable up to a sampling ratio of 25% in Cartesian k-space.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
PublisherSpringer Verlag
Pages241-249
Number of pages9
ISBN (Print)9783030009274
DOIs
Publication statusPublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 2018 Sep 162018 Sep 20

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period18/9/1618/9/20

Bibliographical note

Funding Information:
Acknowledgements. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2016R1A2B4015016) and was partially supported by the Graduate School of YONSEI University Research Scholarship Grants in 2017 and the Brain Korea 21 Plus Project of Dept. of Electrical and Electronic Engineering, Yonsei University in 2018.

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Translation of 1D inverse fourier transform of k-space to an image based on deep learning for accelerating magnetic resonance imaging'. Together they form a unique fingerprint.

Cite this