Tropospheric emissions: Monitoring of pollution (TEMPO)

P. Zoogman, X. Liu, R. M. Suleiman, W. F. Pennington, D. E. Flittner, J. A. Al-Saadi, B. B. Hilton, D. K. Nicks, M. J. Newchurch, J. L. Carr, S. J. Janz, M. R. Andraschko, A. Arola, B. D. Baker, B. P. Canova, C. Chan Miller, R. C. Cohen, J. E. Davis, M. E. Dussault, D. P. EdwardsJ. Fishman, A. Ghulam, G. González Abad, M. Grutter, J. R. Herman, J. Houck, D. J. Jacob, J. Joiner, B. J. Kerridge, J. Kim, N. A. Krotkov, L. Lamsal, C. Li, A. Lindfors, R. V. Martin, C. T. McElroy, C. McLinden, V. Natraj, D. O. Neil, C. R. Nowlan, E. J. O׳Sullivan, P. I. Palmer, R. B. Pierce, M. R. Pippin, A. Saiz-Lopez, R. J.D. Spurr, J. J. Szykman, O. Torres, J. P. Veefkind, B. Veihelmann, H. Wang, J. Wang, K. Chance

Research output: Contribution to journalReview article

78 Citations (Scopus)

Abstract

TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

Original languageEnglish
Pages (from-to)17-39
Number of pages23
JournalJournal of Quantitative Spectroscopy and Radiative Transfer
Volume186
DOIs
Publication statusPublished - 2017 Jan 1

Fingerprint

pollution
Pollution
Monitoring
air quality
chemistry
Aerosols
Air quality
aerosols
Orbits
spatial resolution
Bahamas
Earth (planet)
Cuba
pollution monitoring
Glyoxal
foliage
carbon cycle
Nitrogen Dioxide
Sulfur Dioxide
air pollution

All Science Journal Classification (ASJC) codes

  • Radiation
  • Atomic and Molecular Physics, and Optics
  • Spectroscopy

Cite this

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., ... Chance, K. (2017). Tropospheric emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 17-39. https://doi.org/10.1016/j.jqsrt.2016.05.008
Zoogman, P. ; Liu, X. ; Suleiman, R. M. ; Pennington, W. F. ; Flittner, D. E. ; Al-Saadi, J. A. ; Hilton, B. B. ; Nicks, D. K. ; Newchurch, M. J. ; Carr, J. L. ; Janz, S. J. ; Andraschko, M. R. ; Arola, A. ; Baker, B. D. ; Canova, B. P. ; Chan Miller, C. ; Cohen, R. C. ; Davis, J. E. ; Dussault, M. E. ; Edwards, D. P. ; Fishman, J. ; Ghulam, A. ; González Abad, G. ; Grutter, M. ; Herman, J. R. ; Houck, J. ; Jacob, D. J. ; Joiner, J. ; Kerridge, B. J. ; Kim, J. ; Krotkov, N. A. ; Lamsal, L. ; Li, C. ; Lindfors, A. ; Martin, R. V. ; McElroy, C. T. ; McLinden, C. ; Natraj, V. ; Neil, D. O. ; Nowlan, C. R. ; O׳Sullivan, E. J. ; Palmer, P. I. ; Pierce, R. B. ; Pippin, M. R. ; Saiz-Lopez, A. ; Spurr, R. J.D. ; Szykman, J. J. ; Torres, O. ; Veefkind, J. P. ; Veihelmann, B. ; Wang, H. ; Wang, J. ; Chance, K. / Tropospheric emissions : Monitoring of pollution (TEMPO). In: Journal of Quantitative Spectroscopy and Radiative Transfer. 2017 ; Vol. 186. pp. 17-39.
@article{83122ea32cb04259820b12eee5de04db,
title = "Tropospheric emissions: Monitoring of pollution (TEMPO)",
abstract = "TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.",
author = "P. Zoogman and X. Liu and Suleiman, {R. M.} and Pennington, {W. F.} and Flittner, {D. E.} and Al-Saadi, {J. A.} and Hilton, {B. B.} and Nicks, {D. K.} and Newchurch, {M. J.} and Carr, {J. L.} and Janz, {S. J.} and Andraschko, {M. R.} and A. Arola and Baker, {B. D.} and Canova, {B. P.} and {Chan Miller}, C. and Cohen, {R. C.} and Davis, {J. E.} and Dussault, {M. E.} and Edwards, {D. P.} and J. Fishman and A. Ghulam and {Gonz{\'a}lez Abad}, G. and M. Grutter and Herman, {J. R.} and J. Houck and Jacob, {D. J.} and J. Joiner and Kerridge, {B. J.} and J. Kim and Krotkov, {N. A.} and L. Lamsal and C. Li and A. Lindfors and Martin, {R. V.} and McElroy, {C. T.} and C. McLinden and V. Natraj and Neil, {D. O.} and Nowlan, {C. R.} and O׳Sullivan, {E. J.} and Palmer, {P. I.} and Pierce, {R. B.} and Pippin, {M. R.} and A. Saiz-Lopez and Spurr, {R. J.D.} and Szykman, {J. J.} and O. Torres and Veefkind, {J. P.} and B. Veihelmann and H. Wang and J. Wang and K. Chance",
year = "2017",
month = "1",
day = "1",
doi = "10.1016/j.jqsrt.2016.05.008",
language = "English",
volume = "186",
pages = "17--39",
journal = "Journal of Quantitative Spectroscopy and Radiative Transfer",
issn = "0022-4073",
publisher = "Elsevier Limited",

}

Zoogman, P, Liu, X, Suleiman, RM, Pennington, WF, Flittner, DE, Al-Saadi, JA, Hilton, BB, Nicks, DK, Newchurch, MJ, Carr, JL, Janz, SJ, Andraschko, MR, Arola, A, Baker, BD, Canova, BP, Chan Miller, C, Cohen, RC, Davis, JE, Dussault, ME, Edwards, DP, Fishman, J, Ghulam, A, González Abad, G, Grutter, M, Herman, JR, Houck, J, Jacob, DJ, Joiner, J, Kerridge, BJ, Kim, J, Krotkov, NA, Lamsal, L, Li, C, Lindfors, A, Martin, RV, McElroy, CT, McLinden, C, Natraj, V, Neil, DO, Nowlan, CR, O׳Sullivan, EJ, Palmer, PI, Pierce, RB, Pippin, MR, Saiz-Lopez, A, Spurr, RJD, Szykman, JJ, Torres, O, Veefkind, JP, Veihelmann, B, Wang, H, Wang, J & Chance, K 2017, 'Tropospheric emissions: Monitoring of pollution (TEMPO)', Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 186, pp. 17-39. https://doi.org/10.1016/j.jqsrt.2016.05.008

Tropospheric emissions : Monitoring of pollution (TEMPO). / Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; Janz, S. J.; Andraschko, M. R.; Arola, A.; Baker, B. D.; Canova, B. P.; Chan Miller, C.; Cohen, R. C.; Davis, J. E.; Dussault, M. E.; Edwards, D. P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J. R.; Houck, J.; Jacob, D. J.; Joiner, J.; Kerridge, B. J.; Kim, J.; Krotkov, N. A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R. V.; McElroy, C. T.; McLinden, C.; Natraj, V.; Neil, D. O.; Nowlan, C. R.; O׳Sullivan, E. J.; Palmer, P. I.; Pierce, R. B.; Pippin, M. R.; Saiz-Lopez, A.; Spurr, R. J.D.; Szykman, J. J.; Torres, O.; Veefkind, J. P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K.

In: Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 186, 01.01.2017, p. 17-39.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Tropospheric emissions

T2 - Monitoring of pollution (TEMPO)

AU - Zoogman, P.

AU - Liu, X.

AU - Suleiman, R. M.

AU - Pennington, W. F.

AU - Flittner, D. E.

AU - Al-Saadi, J. A.

AU - Hilton, B. B.

AU - Nicks, D. K.

AU - Newchurch, M. J.

AU - Carr, J. L.

AU - Janz, S. J.

AU - Andraschko, M. R.

AU - Arola, A.

AU - Baker, B. D.

AU - Canova, B. P.

AU - Chan Miller, C.

AU - Cohen, R. C.

AU - Davis, J. E.

AU - Dussault, M. E.

AU - Edwards, D. P.

AU - Fishman, J.

AU - Ghulam, A.

AU - González Abad, G.

AU - Grutter, M.

AU - Herman, J. R.

AU - Houck, J.

AU - Jacob, D. J.

AU - Joiner, J.

AU - Kerridge, B. J.

AU - Kim, J.

AU - Krotkov, N. A.

AU - Lamsal, L.

AU - Li, C.

AU - Lindfors, A.

AU - Martin, R. V.

AU - McElroy, C. T.

AU - McLinden, C.

AU - Natraj, V.

AU - Neil, D. O.

AU - Nowlan, C. R.

AU - O׳Sullivan, E. J.

AU - Palmer, P. I.

AU - Pierce, R. B.

AU - Pippin, M. R.

AU - Saiz-Lopez, A.

AU - Spurr, R. J.D.

AU - Szykman, J. J.

AU - Torres, O.

AU - Veefkind, J. P.

AU - Veihelmann, B.

AU - Wang, H.

AU - Wang, J.

AU - Chance, K.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

AB - TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

UR - http://www.scopus.com/inward/record.url?scp=84977598074&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84977598074&partnerID=8YFLogxK

U2 - 10.1016/j.jqsrt.2016.05.008

DO - 10.1016/j.jqsrt.2016.05.008

M3 - Review article

AN - SCOPUS:84977598074

VL - 186

SP - 17

EP - 39

JO - Journal of Quantitative Spectroscopy and Radiative Transfer

JF - Journal of Quantitative Spectroscopy and Radiative Transfer

SN - 0022-4073

ER -