Tunable Dielectric Properties of Poly(vinylidenefluoride-co-hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles

Wooje Han, Taehee Kim, Byungwook Yoo, Hyung Ho Park

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Fluoropolymer nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were prepared using fluorinated barium strontium titanate (Ba1-xSrxTiO3, BSTO) nanoparticles (NPs) by low-temperature synthesis using a modified liquid-solid solution process. The exact stoichiometry of as-synthesized BSTO NPs was confirmed by X-ray diffraction analysis along with lattice parameter calculations. The synthesized BSTO NPs were fluorinated using 2,2,2-trifluoroacetic acid as a fluorous ligand. The BSTO NPs showed high solubility in the fluorous system (polymer and solvent) on account of their modified surface. The root-mean-square roughness of the fluorinated BSTO/PVdF-HFP nanocomposite was 76 times lower than that of the nonfluorinated BSTO/PVdF-HFP nanocomposite. The dielectric constant of the fluorinated BSTO/PVdF-HFP nanocomposite exhibited Curie temperature behavior. The dielectric constant of the nanocomposite predicted using the modified Kerner model at room temperature agreed well with the experimental values.

Original languageEnglish
Article number4086
JournalScientific reports
Volume8
Issue number1
DOIs
Publication statusPublished - 2018 Dec 1

Fingerprint

Nanocomposites
Barium
Nanoparticles
Temperature
Trifluoroacetic Acid
X-Ray Diffraction
Solubility
Polymers
strontium titanium oxide
Ligands
polyvinylidene fluoride

All Science Journal Classification (ASJC) codes

  • General

Cite this

@article{7bf8269923b64089981ab6a4751e795b,
title = "Tunable Dielectric Properties of Poly(vinylidenefluoride-co-hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles",
abstract = "Fluoropolymer nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were prepared using fluorinated barium strontium titanate (Ba1-xSrxTiO3, BSTO) nanoparticles (NPs) by low-temperature synthesis using a modified liquid-solid solution process. The exact stoichiometry of as-synthesized BSTO NPs was confirmed by X-ray diffraction analysis along with lattice parameter calculations. The synthesized BSTO NPs were fluorinated using 2,2,2-trifluoroacetic acid as a fluorous ligand. The BSTO NPs showed high solubility in the fluorous system (polymer and solvent) on account of their modified surface. The root-mean-square roughness of the fluorinated BSTO/PVdF-HFP nanocomposite was 76 times lower than that of the nonfluorinated BSTO/PVdF-HFP nanocomposite. The dielectric constant of the fluorinated BSTO/PVdF-HFP nanocomposite exhibited Curie temperature behavior. The dielectric constant of the nanocomposite predicted using the modified Kerner model at room temperature agreed well with the experimental values.",
author = "Wooje Han and Taehee Kim and Byungwook Yoo and Park, {Hyung Ho}",
year = "2018",
month = "12",
day = "1",
doi = "10.1038/s41598-018-22442-2",
language = "English",
volume = "8",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

Tunable Dielectric Properties of Poly(vinylidenefluoride-co-hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles. / Han, Wooje; Kim, Taehee; Yoo, Byungwook; Park, Hyung Ho.

In: Scientific reports, Vol. 8, No. 1, 4086, 01.12.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Tunable Dielectric Properties of Poly(vinylidenefluoride-co-hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles

AU - Han, Wooje

AU - Kim, Taehee

AU - Yoo, Byungwook

AU - Park, Hyung Ho

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Fluoropolymer nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were prepared using fluorinated barium strontium titanate (Ba1-xSrxTiO3, BSTO) nanoparticles (NPs) by low-temperature synthesis using a modified liquid-solid solution process. The exact stoichiometry of as-synthesized BSTO NPs was confirmed by X-ray diffraction analysis along with lattice parameter calculations. The synthesized BSTO NPs were fluorinated using 2,2,2-trifluoroacetic acid as a fluorous ligand. The BSTO NPs showed high solubility in the fluorous system (polymer and solvent) on account of their modified surface. The root-mean-square roughness of the fluorinated BSTO/PVdF-HFP nanocomposite was 76 times lower than that of the nonfluorinated BSTO/PVdF-HFP nanocomposite. The dielectric constant of the fluorinated BSTO/PVdF-HFP nanocomposite exhibited Curie temperature behavior. The dielectric constant of the nanocomposite predicted using the modified Kerner model at room temperature agreed well with the experimental values.

AB - Fluoropolymer nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were prepared using fluorinated barium strontium titanate (Ba1-xSrxTiO3, BSTO) nanoparticles (NPs) by low-temperature synthesis using a modified liquid-solid solution process. The exact stoichiometry of as-synthesized BSTO NPs was confirmed by X-ray diffraction analysis along with lattice parameter calculations. The synthesized BSTO NPs were fluorinated using 2,2,2-trifluoroacetic acid as a fluorous ligand. The BSTO NPs showed high solubility in the fluorous system (polymer and solvent) on account of their modified surface. The root-mean-square roughness of the fluorinated BSTO/PVdF-HFP nanocomposite was 76 times lower than that of the nonfluorinated BSTO/PVdF-HFP nanocomposite. The dielectric constant of the fluorinated BSTO/PVdF-HFP nanocomposite exhibited Curie temperature behavior. The dielectric constant of the nanocomposite predicted using the modified Kerner model at room temperature agreed well with the experimental values.

UR - http://www.scopus.com/inward/record.url?scp=85043257584&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85043257584&partnerID=8YFLogxK

U2 - 10.1038/s41598-018-22442-2

DO - 10.1038/s41598-018-22442-2

M3 - Article

C2 - 29511304

AN - SCOPUS:85043257584

VL - 8

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 4086

ER -