Tunable wide blue photoluminescence with europium decorated graphene

Byeongho Park, Sun Jun Kim, Juhwan Lim, Surajit Some, Ji Eun Park, Sung Jin Kim, Chulki Kim, Taik Jin Lee, Seong Chan Jun

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

The current paper describes europium decorated graphene (EuG) which provides high and wide blue emission at 400 nm and 458 nm. The chemical and structural properties of the products are characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. Fourier transform infrared (FT-IR) and UV-Vis spectrometery are employed to analyze the optical properties. The photoluminescence features are investigated using the excitation/emission spectra and fluorescence microscopy images. The photoluminescence intensity of EuG with the bright fluorescent nature of europium is higher than that of reduced graphene oxide. The transition of trivalent europium (Eu3+) that leads to the radiation of light with a 590 nm wavelength can be turned into a 4f-4f transition of divalent (Eu2+) europium upon heating in the presence of the graphene sheet, which assists the reduction of the europium ion. The enhancement of the blue emission at 458 nm with quenching in the red at 590 nm is affected by the modification of properties (by → via) the europium-graphene composite concentration and external thermal energy. The result suggests a new possibility for the fluorescence characteristics of the lanthanide-graphene nanocomposite that can be applied to the display, optoelectronic devices, and bio-imaging fields. The temperature-tunable photoluminescence characteristics can be used as a non-contact thermal sensor. This journal is

Original languageEnglish
Pages (from-to)4030-4038
Number of pages9
JournalJournal of Materials Chemistry C
Volume3
Issue number16
DOIs
Publication statusPublished - 2015 Apr 28

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Tunable wide blue photoluminescence with europium decorated graphene'. Together they form a unique fingerprint.

  • Cite this

    Park, B., Kim, S. J., Lim, J., Some, S., Park, J. E., Kim, S. J., Kim, C., Lee, T. J., & Jun, S. C. (2015). Tunable wide blue photoluminescence with europium decorated graphene. Journal of Materials Chemistry C, 3(16), 4030-4038. https://doi.org/10.1039/c4tc02361g