Abstract
Effective modulation of physical properties via external control may open various potential nanoelectronic applications of single-layer MoS 2 nanoribbons (MoS 2NRs). We show by first-principles calculations that the magnetic and electronic properties of zigzag MoS 2NRs exhibit sensitive response to applied strain and electric field. Tensile strain in the zigzag direction produces reversible modulation of magnetic moments and electronic phase transitions among metallic, half-metallic, and semiconducting states, which stem from the energy-level shifts induced by an internal electric polarization and the competing covalent/ionic interactions. A simultaneously applied electric field further enhances or suppresses the strain-induced modulations depending on the direction of the electric field relative to the internal polarization. These findings suggest a robust and efficient approach to modulating the properties of MoS 2NRs by a combination of strain engineering and electric field tuning.
Original language | English |
---|---|
Pages (from-to) | 2934-2941 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry Letters |
Volume | 3 |
Issue number | 20 |
DOIs | |
Publication status | Published - 2012 Oct 18 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Physical and Theoretical Chemistry