Two-dimensional palladium diselenide for the oxygen reduction reaction

See Wee Koh, Jie Hu, Jeemin Hwang, Peng Yu, Zixu Sun, Qiunan Liu, Wei Hong, Junyu Ge, Jipeng Fei, Byungchan Han, Zheng Liu, Hong Li

Research output: Contribution to journalArticlepeer-review

Abstract

The emerging two-dimensional (2D) materials, particularly 2D transition metal dichalcogenides (TMDs), show great potential for catalysis due to their extraordinary large surface areas and tuneable activities. However, the as-synthesized TMDs are usually chemically inert because of their perfect atomic structure and inaccessible interlayer space for electrolytes. Herein, we activate 2D palladium diselenide (PdSe2) for catalysing the oxygen reduction reaction using a controllable electrochemical intercalation process. The electrochemically activated PdSe2 exhibits greatly enhanced electrocatalytic activities such as a doubled current density, 250 mV positive shift of potential, 5 times smaller Tafel slope, and greatly improved stability. DFT calculations were employed to study the mechanisms of electrochemical activation. Complementary experimental and theoretical studies suggest that the significantly increased activities come from (1) the activated surface with enriched Se vacancies and chemically bonded oxygen, and (2) easy access of the interlayer space for reaction intermediates. Furthermore, the robustness of the Pd-Se bonding ensures high structural stability and excellent resistance to degradation. This journal is

Original languageEnglish
Pages (from-to)4970-4980
Number of pages11
JournalMaterials Chemistry Frontiers
Volume5
Issue number13
DOIs
Publication statusPublished - 2021 Jul 7

Bibliographical note

Funding Information:
This work was supported by the Nanyang Technological University under NAP award (M408050000) and Singapore Ministry of Education Tier 1 program (2018-T1-001-051). J. H. is grateful for financial support from the National Natural Science Foundation of China (No. 51771165 and 51925105), and the Natural Science Foundation of Hebei Province (No. E2020203123). B. H. acknowledges the support from the Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the NRF funded by the Ministry of Science and ICT (Project No. 2013M3A6B1078882).

Publisher Copyright:
© the Partner Organisations.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Two-dimensional palladium diselenide for the oxygen reduction reaction'. Together they form a unique fingerprint.

Cite this