Two-Way Molecular Communications

Jong Woo Kwak, H. Birkan Yilmaz, Nariman Farsad, Chan Byoung Chae, Andrea J. Goldsmith

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

For nano-scale communications, there must be cooperation and simultaneous communication between nano devices. To this end, in this paper, we investigate two-way (a.k.a. bi-directional) molecular communications between nano devices. If different types of molecules are used for the communication links, the two-way system eliminates the need to consider self-interference. However, in many systems, it is not feasible to use a different type of molecule for each communication link. Thus, we propose a two-way molecular communication system that uses a single type of molecule. We derive a channel model for this system and use it to analyze the proposed system's bit error rate, throughput, and self-interference. Moreover, we propose analog- and digital- self-interference cancellation techniques. The enhancement of link-level performance using these techniques is confirmed with both particle-based simulations and analytical results.

Original languageEnglish
Article number9017969
Pages (from-to)3550-3563
Number of pages14
JournalIEEE Transactions on Communications
Volume68
Issue number6
DOIs
Publication statusPublished - 2020 Jun

Bibliographical note

Funding Information:
Manuscript received March 18, 2019; revised August 12, 2019, October 26, 2019, and January 19, 2020; accepted February 18, 2020. Date of publication February 28, 2020; date of current version June 16, 2020. This research was supported in part by the MSIT (Ministry of Science and ICT), Korea, under the ICT Consilience Creative program (IITP-2017-2017-0-01015), the National Research Foundation of Korea (NRF) grant (2017R1A1A1A05001439, 2020R1A2C4001941), and the Scientific and Technical Research Council of Turkey (TUBITAK) under 2232 Program and Grant 118C274. This article was presented at the Proceedings of ACM International Conference of Nanoscale Computing and Communication (NANOCOM), September 2018 [1]. The associate editor coordinating the review of this article and approving it for publication was Y. Deng. (Corresponding author: Chan-Byoung Chae.) Jong Woo Kwak and Chan-Byoung Chae are with the School of Integrated Technology, Yonsei University, Seoul 03722, South Korea (e-mail: kjw8216@yonsei.ac.kr; cbchae@yonsei.ac.kr).

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Two-Way Molecular Communications'. Together they form a unique fingerprint.

Cite this