Abstract
van der Waals two-dimensional (2D) semiconductors have emerged as a class of materials with promising device characteristics owing to the intrinsic band gap. For realistic applications, the ideal is to modify the band gap in a controlled manner by a mechanism that can be generally applied to this class of materials. Here, we report the observation of a universally tunable band gap in the family of bulk 2H transition metal dichalcogenides (TMDs) by in situ surface doping of Rb atoms. A series of angle-resolved photoemission spectra unexceptionally shows that the band gap of TMDs at the zone corners is modulated in the range of 0.8-2.0 eV, which covers a wide spectral range from visible to near-infrared, with a tendency from indirect to direct band gap. A key clue to understanding the mechanism of this band-gap engineering is provided by the spectroscopic signature of symmetry breaking and resultant spin-splitting, which can be explained by the formation of 2D electric dipole layers within the surface bilayer of TMDs. Our results establish the surface Stark effect as a universal mechanism of band-gap engineering on the basis of the strong 2D nature of van der Waals semiconductors.
Original language | English |
---|---|
Pages (from-to) | 1610-1615 |
Number of pages | 6 |
Journal | Nano letters |
Volume | 17 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2017 Mar 8 |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanical Engineering