Unraveling Melanin Biosynthesis and Signaling Networks in Cryptococcus neoformans

Dongpil Lee, Eun Ha Jang, Minjae Lee, Sun Woo Kim, Yeonseon Lee, Kyung Tae Lee, Yong Sun Bahn

Research output: Contribution to journalArticle

Abstract

Melanin is an antioxidant polyphenol pigment required for the pathogenicity of many fungal pathogens, but comprehensive regulatory mechanisms remain unidentified. In this study, we systematically analyzed melanin-regulating signaling pathways in Cryptococcus neoformans and identified four melanin-regulating core transcription factors (TFs), Bzp4, Usv101, Mbs1, and Hob1, required for induction of the laccase gene (LAC1). Bzp4, Usv101, and Mbs1 independently regulate LAC1 induction, whereas Hob1 controls Bzp4 and Usv101 expression. Both Bzp4 and Usv101 are localized in the cytoplasm under nutrient-rich conditions (i.e., in the presence of yeast extract-peptone-dextrose [YPD] medium) but translocate into the nucleus upon nutrient starvation (i.e., in the presence of yeast nitrogen base [YNB] medium without glucose), and Mbs1 is constitutively localized in the nucleus. Notably, the cAMP pathway is not involved in regulation of the four TFs, but the high-osmolarity glycerol response (HOG) pathway negatively regulates induction of BZP4 and LAC1 Next, we searched for potential kinases upstream of the core TFs and identified nine core kinases; their deletion led to defective melanin production and LAC1 induction. Deletion of GSK3 or KIC1 abolished induction of LAC1 and BZP4 and perturbed nuclear translocation of Bzp4. Notably, Gsk3 also regulated expression of HOB1, USV101, and MBS1, indicating that it is a critical melanin-regulating kinase. Finally, an RNA sequencing-based transcriptome analysis of the wild-type strain and of bzp4Δ, usv101Δ, hob1Δ, and mbs1Δ strains under nutrient-rich and nutrient-starved conditions revealed that the melanin-regulating core TFs govern redundant and distinct classes of genes involved in a variety of biological processes.IMPORTANCE Melanins are dark green, brown, or black pigments that serve as antioxidant, reactive oxygen species (ROS) scavengers that protect fungal pathogens from radiation and host immune responses. Cryptococcus neoformans, the major etiological agent of fungal meningoencephalitis, also utilizes melanin as a key virulence factor. In this basidiomycete pathogen, melanin production is regulated by the cAMP and high-osmolarity glycerol response (HOG) pathways, and yet its complex signaling networks remain poorly described. In this study, we uncovered novel melanin synthesis regulatory networks consisting of core transcription factors (TFs), including Bzp4, Usv101, Hob1, and Mbs1, and core kinases Gsk3 and Kic1. These networks were identified through coupling systematic analyses of the expression and epistatic relationships of TF and kinase mutant libraries in the presence of diverse melanin substrates with transcriptome profiling of the core TF mutants. Thus, this report provides comprehensive insight into the melanin-regulating pathways in C. neoformans and other fungal pathogens.

Original languageEnglish
JournalmBio
Volume10
Issue number5
DOIs
Publication statusPublished - 2019 Oct 1

Fingerprint

Cryptococcus neoformans
Melanins
Transcription Factors
Phosphotransferases
Food
Gene Expression Profiling
Osmolar Concentration
Glycerol
Antioxidants
Yeasts
RNA Sequence Analysis
Biological Phenomena
Glucose
Laccase
Basidiomycota
Peptones
Meningoencephalitis
Polyphenols
Virulence Factors
Starvation

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Virology

Cite this

Lee, Dongpil ; Jang, Eun Ha ; Lee, Minjae ; Kim, Sun Woo ; Lee, Yeonseon ; Lee, Kyung Tae ; Bahn, Yong Sun. / Unraveling Melanin Biosynthesis and Signaling Networks in Cryptococcus neoformans. In: mBio. 2019 ; Vol. 10, No. 5.
@article{8ac0994e87c04391add29245bddb4f33,
title = "Unraveling Melanin Biosynthesis and Signaling Networks in Cryptococcus neoformans",
abstract = "Melanin is an antioxidant polyphenol pigment required for the pathogenicity of many fungal pathogens, but comprehensive regulatory mechanisms remain unidentified. In this study, we systematically analyzed melanin-regulating signaling pathways in Cryptococcus neoformans and identified four melanin-regulating core transcription factors (TFs), Bzp4, Usv101, Mbs1, and Hob1, required for induction of the laccase gene (LAC1). Bzp4, Usv101, and Mbs1 independently regulate LAC1 induction, whereas Hob1 controls Bzp4 and Usv101 expression. Both Bzp4 and Usv101 are localized in the cytoplasm under nutrient-rich conditions (i.e., in the presence of yeast extract-peptone-dextrose [YPD] medium) but translocate into the nucleus upon nutrient starvation (i.e., in the presence of yeast nitrogen base [YNB] medium without glucose), and Mbs1 is constitutively localized in the nucleus. Notably, the cAMP pathway is not involved in regulation of the four TFs, but the high-osmolarity glycerol response (HOG) pathway negatively regulates induction of BZP4 and LAC1 Next, we searched for potential kinases upstream of the core TFs and identified nine core kinases; their deletion led to defective melanin production and LAC1 induction. Deletion of GSK3 or KIC1 abolished induction of LAC1 and BZP4 and perturbed nuclear translocation of Bzp4. Notably, Gsk3 also regulated expression of HOB1, USV101, and MBS1, indicating that it is a critical melanin-regulating kinase. Finally, an RNA sequencing-based transcriptome analysis of the wild-type strain and of bzp4Δ, usv101Δ, hob1Δ, and mbs1Δ strains under nutrient-rich and nutrient-starved conditions revealed that the melanin-regulating core TFs govern redundant and distinct classes of genes involved in a variety of biological processes.IMPORTANCE Melanins are dark green, brown, or black pigments that serve as antioxidant, reactive oxygen species (ROS) scavengers that protect fungal pathogens from radiation and host immune responses. Cryptococcus neoformans, the major etiological agent of fungal meningoencephalitis, also utilizes melanin as a key virulence factor. In this basidiomycete pathogen, melanin production is regulated by the cAMP and high-osmolarity glycerol response (HOG) pathways, and yet its complex signaling networks remain poorly described. In this study, we uncovered novel melanin synthesis regulatory networks consisting of core transcription factors (TFs), including Bzp4, Usv101, Hob1, and Mbs1, and core kinases Gsk3 and Kic1. These networks were identified through coupling systematic analyses of the expression and epistatic relationships of TF and kinase mutant libraries in the presence of diverse melanin substrates with transcriptome profiling of the core TF mutants. Thus, this report provides comprehensive insight into the melanin-regulating pathways in C. neoformans and other fungal pathogens.",
author = "Dongpil Lee and Jang, {Eun Ha} and Minjae Lee and Kim, {Sun Woo} and Yeonseon Lee and Lee, {Kyung Tae} and Bahn, {Yong Sun}",
year = "2019",
month = "10",
day = "1",
doi = "10.1128/mBio.02267-19",
language = "English",
volume = "10",
journal = "mBio",
issn = "2161-2129",
publisher = "American Society for Microbiology",
number = "5",

}

Unraveling Melanin Biosynthesis and Signaling Networks in Cryptococcus neoformans. / Lee, Dongpil; Jang, Eun Ha; Lee, Minjae; Kim, Sun Woo; Lee, Yeonseon; Lee, Kyung Tae; Bahn, Yong Sun.

In: mBio, Vol. 10, No. 5, 01.10.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Unraveling Melanin Biosynthesis and Signaling Networks in Cryptococcus neoformans

AU - Lee, Dongpil

AU - Jang, Eun Ha

AU - Lee, Minjae

AU - Kim, Sun Woo

AU - Lee, Yeonseon

AU - Lee, Kyung Tae

AU - Bahn, Yong Sun

PY - 2019/10/1

Y1 - 2019/10/1

N2 - Melanin is an antioxidant polyphenol pigment required for the pathogenicity of many fungal pathogens, but comprehensive regulatory mechanisms remain unidentified. In this study, we systematically analyzed melanin-regulating signaling pathways in Cryptococcus neoformans and identified four melanin-regulating core transcription factors (TFs), Bzp4, Usv101, Mbs1, and Hob1, required for induction of the laccase gene (LAC1). Bzp4, Usv101, and Mbs1 independently regulate LAC1 induction, whereas Hob1 controls Bzp4 and Usv101 expression. Both Bzp4 and Usv101 are localized in the cytoplasm under nutrient-rich conditions (i.e., in the presence of yeast extract-peptone-dextrose [YPD] medium) but translocate into the nucleus upon nutrient starvation (i.e., in the presence of yeast nitrogen base [YNB] medium without glucose), and Mbs1 is constitutively localized in the nucleus. Notably, the cAMP pathway is not involved in regulation of the four TFs, but the high-osmolarity glycerol response (HOG) pathway negatively regulates induction of BZP4 and LAC1 Next, we searched for potential kinases upstream of the core TFs and identified nine core kinases; their deletion led to defective melanin production and LAC1 induction. Deletion of GSK3 or KIC1 abolished induction of LAC1 and BZP4 and perturbed nuclear translocation of Bzp4. Notably, Gsk3 also regulated expression of HOB1, USV101, and MBS1, indicating that it is a critical melanin-regulating kinase. Finally, an RNA sequencing-based transcriptome analysis of the wild-type strain and of bzp4Δ, usv101Δ, hob1Δ, and mbs1Δ strains under nutrient-rich and nutrient-starved conditions revealed that the melanin-regulating core TFs govern redundant and distinct classes of genes involved in a variety of biological processes.IMPORTANCE Melanins are dark green, brown, or black pigments that serve as antioxidant, reactive oxygen species (ROS) scavengers that protect fungal pathogens from radiation and host immune responses. Cryptococcus neoformans, the major etiological agent of fungal meningoencephalitis, also utilizes melanin as a key virulence factor. In this basidiomycete pathogen, melanin production is regulated by the cAMP and high-osmolarity glycerol response (HOG) pathways, and yet its complex signaling networks remain poorly described. In this study, we uncovered novel melanin synthesis regulatory networks consisting of core transcription factors (TFs), including Bzp4, Usv101, Hob1, and Mbs1, and core kinases Gsk3 and Kic1. These networks were identified through coupling systematic analyses of the expression and epistatic relationships of TF and kinase mutant libraries in the presence of diverse melanin substrates with transcriptome profiling of the core TF mutants. Thus, this report provides comprehensive insight into the melanin-regulating pathways in C. neoformans and other fungal pathogens.

AB - Melanin is an antioxidant polyphenol pigment required for the pathogenicity of many fungal pathogens, but comprehensive regulatory mechanisms remain unidentified. In this study, we systematically analyzed melanin-regulating signaling pathways in Cryptococcus neoformans and identified four melanin-regulating core transcription factors (TFs), Bzp4, Usv101, Mbs1, and Hob1, required for induction of the laccase gene (LAC1). Bzp4, Usv101, and Mbs1 independently regulate LAC1 induction, whereas Hob1 controls Bzp4 and Usv101 expression. Both Bzp4 and Usv101 are localized in the cytoplasm under nutrient-rich conditions (i.e., in the presence of yeast extract-peptone-dextrose [YPD] medium) but translocate into the nucleus upon nutrient starvation (i.e., in the presence of yeast nitrogen base [YNB] medium without glucose), and Mbs1 is constitutively localized in the nucleus. Notably, the cAMP pathway is not involved in regulation of the four TFs, but the high-osmolarity glycerol response (HOG) pathway negatively regulates induction of BZP4 and LAC1 Next, we searched for potential kinases upstream of the core TFs and identified nine core kinases; their deletion led to defective melanin production and LAC1 induction. Deletion of GSK3 or KIC1 abolished induction of LAC1 and BZP4 and perturbed nuclear translocation of Bzp4. Notably, Gsk3 also regulated expression of HOB1, USV101, and MBS1, indicating that it is a critical melanin-regulating kinase. Finally, an RNA sequencing-based transcriptome analysis of the wild-type strain and of bzp4Δ, usv101Δ, hob1Δ, and mbs1Δ strains under nutrient-rich and nutrient-starved conditions revealed that the melanin-regulating core TFs govern redundant and distinct classes of genes involved in a variety of biological processes.IMPORTANCE Melanins are dark green, brown, or black pigments that serve as antioxidant, reactive oxygen species (ROS) scavengers that protect fungal pathogens from radiation and host immune responses. Cryptococcus neoformans, the major etiological agent of fungal meningoencephalitis, also utilizes melanin as a key virulence factor. In this basidiomycete pathogen, melanin production is regulated by the cAMP and high-osmolarity glycerol response (HOG) pathways, and yet its complex signaling networks remain poorly described. In this study, we uncovered novel melanin synthesis regulatory networks consisting of core transcription factors (TFs), including Bzp4, Usv101, Hob1, and Mbs1, and core kinases Gsk3 and Kic1. These networks were identified through coupling systematic analyses of the expression and epistatic relationships of TF and kinase mutant libraries in the presence of diverse melanin substrates with transcriptome profiling of the core TF mutants. Thus, this report provides comprehensive insight into the melanin-regulating pathways in C. neoformans and other fungal pathogens.

UR - http://www.scopus.com/inward/record.url?scp=85072847992&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072847992&partnerID=8YFLogxK

U2 - 10.1128/mBio.02267-19

DO - 10.1128/mBio.02267-19

M3 - Article

C2 - 31575776

AN - SCOPUS:85072847992

VL - 10

JO - mBio

JF - mBio

SN - 2161-2129

IS - 5

ER -