Abstract
Novelty is the quality of being different, new and unusual. Identifying it is an important issue in various fields such as anomaly detection in video. To detect the novelty, there are supervised learning methods that define and classify inliers and outliers, and unsupervised learning methods that define the distribution of inliers and identify whether objects are normal or abnormal. The former has limitations that the labeled data is required and the novelty which cannot be defined is not detected. To cope with the problems, the latter has recently been explored, but it is difficult to define an appropriate distribution for normal data and learn in an end-to-end manner due to unavailability of outliers. In this paper, we propose a novel one-class novelty detection method with constant curvature adversarial autoencoder. It consists of three components: an encoder, a decoder, and a discriminator. The encoder and discriminator interact with each other in adversarial and learn the distribution of normal data only. The decoder reconstructs the data to verify that the feature of the data is well extracted to the latent variable that is the output of the encoder. We also train the model to define a distribution for normal data as a constant curvature manifold, a non-Euclidean space, for the diversity of data distribution. The proposed method is verified with the well-known benchmark datasets: MNIST, CALTECH-256, and UCSD Pedestrian 1. For the area under curve as a measure of the performance, the proposed method shows the state-of-the-art performance with 0.87, 0.94, and 0.89 on average for the datasets, respectively.
Original language | English |
---|---|
Title of host publication | Proceedings - 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019 |
Editors | Kokou Yetongnon, Albert Dipanda, Gabriella Sanniti di Baja, Luigi Gallo, Richard Chbeir |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 22-27 |
Number of pages | 6 |
ISBN (Electronic) | 9781728156866 |
DOIs | |
Publication status | Published - 2019 Nov |
Event | 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019 - Sorrento, Italy Duration: 2019 Nov 26 → 2019 Nov 29 |
Publication series
Name | Proceedings - 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019 |
---|
Conference
Conference | 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019 |
---|---|
Country/Territory | Italy |
City | Sorrento |
Period | 19/11/26 → 19/11/29 |
Bibliographical note
Funding Information:Sensor-based Intelligent Systems for Outdoor Surveillance Robots]. J.-Y. Kim has been supported by NRF (National Research Foundation of Korea) grant funded by the Korean government (NRF-2019-Fostering Core Leaders of the Future Basic Science Program/Global Ph.D. Fellowship Program). The authors appreciate E.-B. Lee for helping to perform the experiments.
Funding Information:
ACKNOWLEDGMENT This work was supported by the ICT R&D program of MSIP/IITP. [2017-0-00306, Development of Multimodal
Publisher Copyright:
© 2019 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Signal Processing
- Media Technology
- Computer Networks and Communications