Uptake of cell debris and enhanced expression of inflammatory factors in response to dead cells in corneal fibroblast cells

Heejei Yoon, Seung Il Choi, Eung Kweon Kim

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Keratocytes synthesize stromal proteins and participate in wound healing through successive differentiation into corneal fibroblasts and myofibroblasts. Cultured keratocytes or corneal fibroblasts are also known as non-professional phagocytes and innate immune cells. However, whether the corneal fibroblasts phagocytize their dead cells and whether the associated innate immunity is enhanced remains unknown. We initially characterized immortalized corneal fibroblast cells with the expression of specific genes. The corneal fibroblasts strongly expressed extracellular matrix molecules (FN and COL1A1) and low or medium levels of macrophage markers (CD14, CD68, and CD36), inflammatory cytokines (IL1A, IL1B, and IL6), and chemokines (IL8 and CCL2), but not CD11b, suggesting that corneal fibroblasts are macrophage-like fibroblasts. We confirmed the phagocytic activity of the corneal fibroblasts with fluorescent dye labeled-dead E. coli and S. aureus bacteria using confocal microscopy and flow cytometry. To test corneal fibroblast phagocytosis of apoptotic and necrotic cells we co-cultured corneal fibroblasts with fluorescent dye labeled-apoptotic and -necrotic cells and analyzed their uptake using fluorescence and confocal microscopy. We observed that corneal fibroblasts can engulf digested or processed cellular debris and entire dead cells. Co-cultured dying and dead cells strongly enhanced the expression of cytokine (IL1A, IL1B, and IL6), chemokine (CCL2, CCL5, CCL20, IL8, and CXCL10), and MMP (MMP1, MMP3, and MMP9) genes through the NF-κB signaling pathway. Our findings suggest that dying and dead cells stimulate corneal fibroblasts to further induce inflammatory factors and that corneal fibroblasts contribute to the clearing of cell debris as non-professional phagocytes.

Original languageEnglish
Article number108017
JournalExperimental Eye Research
Volume194
DOIs
Publication statusPublished - 2020 May

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Ltd

All Science Journal Classification (ASJC) codes

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Uptake of cell debris and enhanced expression of inflammatory factors in response to dead cells in corneal fibroblast cells'. Together they form a unique fingerprint.

Cite this