UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries

Hyo Jeong Ha, Eun Hye Kil, Yo Han Kwon, Je Young Kim, Chang Kee Lee, Sang Young Lee

Research output: Contribution to journalArticle

128 Citations (Scopus)

Abstract

A facile approach to fabricate a highly bendable plastic crystal composite electrolyte (PCCE) for use in shape conformable all-solid-state lithium-ion batteries is demonstrated. This strategy is based on integration of a semi-interpenetrating polymer network (semi-IPN) matrix with a plastic crystal electrolyte (PCE, 1 M lithium bis-trifluoromethanesulfonimide in succinonitrile). In comparison to conventional carbonate-based electrolytes, salient benefits of the PCE are the thermal stability and nonflammability, which show promising potential as a safer electrolyte. The semi-IPN matrix in the PCCE is composed of a UV (ultraviolet)-crosslinked ethoxylated trimethylolpropane triacrylate polymer network and polyvinylidene fluoride-co-hexafluoropropylene (as a linear polymer). Solid electrolyte properties of the PCCE are investigated in terms of plastic crystal behavior, mechanical bendability, and ionic transport. Owing to the presence of the anomalous semi-IPN matrix, the PCCE exhibits unprecedented improvement in bendability, along with affording high ionic conductivity. Based on this understanding of the PCCE characteristics, feasibility of applying the PCCE to solid electrolytes for lithium-ion batteries is explored. The facile ionic transport of the PCCE, in conjunction with suppressed growth of cell impedance during cycling, plays a crucial role in providing excellence in cell performance. These advantageous features of the PCCE are further discussed with an in-depth consideration of the semi-IPN matrix architecture and its specific interaction with the PCE.

Original languageEnglish
Pages (from-to)6491-6499
Number of pages9
JournalEnergy and Environmental Science
Volume5
Issue number4
DOIs
Publication statusPublished - 2012 Apr

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint Dive into the research topics of 'UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries'. Together they form a unique fingerprint.

Cite this