Validation of a deep-learning-based retinal biomarker (Reti-CVD) in the prediction of cardiovascular disease: data from UK Biobank

Rachel Marjorie Wei Wen Tseng, Tyler Hyungtaek Rim, Eduard Shantsila, Joseph K. Yi, Sungha Park, Sung Soo Kim, Chan Joo Lee, Sahil Thakur, Simon Nusinovici, Qingsheng Peng, Hyeonmin Kim, Geunyoung Lee, Marco Yu, Yih Chung Tham, Ameet Bakhai, Paul Leeson, Gregory Y.H. Lip, Tien Yin Wong, Ching Yu Cheng

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Currently in the United Kingdom, cardiovascular disease (CVD) risk assessment is based on the QRISK3 score, in which 10% 10-year CVD risk indicates clinical intervention. However, this benchmark has limited efficacy in clinical practice and the need for a more simple, non-invasive risk stratification tool is necessary. Retinal photography is becoming increasingly acceptable as a non-invasive imaging tool for CVD. Previously, we developed a novel CVD risk stratification system based on retinal photographs predicting future CVD risk. This study aims to further validate our biomarker, Reti-CVD, (1) to detect risk group of ≥ 10% in 10-year CVD risk and (2) enhance risk assessment in individuals with QRISK3 of 7.5–10% (termed as borderline-QRISK3 group) using the UK Biobank. Methods: Reti-CVD scores were calculated and stratified into three risk groups based on optimized cut-off values from the UK Biobank. We used Cox proportional-hazards models to evaluate the ability of Reti-CVD to predict CVD events in the general population. C-statistics was used to assess the prognostic value of adding Reti-CVD to QRISK3 in borderline-QRISK3 group and three vulnerable subgroups. Results: Among 48,260 participants with no history of CVD, 6.3% had CVD events during the 11-year follow-up. Reti-CVD was associated with an increased risk of CVD (adjusted hazard ratio [HR] 1.41; 95% confidence interval [CI], 1.30–1.52) with a 13.1% (95% CI, 11.7–14.6%) 10-year CVD risk in Reti-CVD-high-risk group. The 10-year CVD risk of the borderline-QRISK3 group was greater than 10% in Reti-CVD-high-risk group (11.5% in non-statin cohort [n = 45,473], 11.5% in stage 1 hypertension cohort [n = 11,966], and 14.2% in middle-aged cohort [n = 38,941]). C statistics increased by 0.014 (0.010–0.017) in non-statin cohort, 0.013 (0.007–0.019) in stage 1 hypertension cohort, and 0.023 (0.018–0.029) in middle-aged cohort for CVD event prediction after adding Reti-CVD to QRISK3. Conclusions: Reti-CVD has the potential to identify individuals with ≥ 10% 10-year CVD risk who are likely to benefit from earlier preventative CVD interventions. For borderline-QRISK3 individuals with 10-year CVD risk between 7.5 and 10%, Reti-CVD could be used as a risk enhancer tool to help improve discernment accuracy, especially in adult groups that may be pre-disposed to CVD.

Original languageEnglish
Article number28
JournalBMC Medicine
Volume21
Issue number1
DOIs
Publication statusPublished - 2023 Dec

Bibliographical note

Funding Information:
This project is supported by the Agency for Science, Technology and Research (A*STAR) under its RIE2020 Health and Biomedical Sciences (HBMS) Industry Alignment Fund Pre-Positioning (IAF-PP) Grant No. H20c6a0031. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the A*STAR.

Publisher Copyright:
© 2023, The Author(s).

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Validation of a deep-learning-based retinal biomarker (Reti-CVD) in the prediction of cardiovascular disease: data from UK Biobank'. Together they form a unique fingerprint.

Cite this