Validity and reliability of a novel instrument for the measurement of subtalar joint axis of rotation

Byong Hun Kim, Sae Yong Lee

Research output: Contribution to journalArticlepeer-review


Inclination of the subtalar joint (STJ) in the sagittal and transverse planes may be highly associated with ankle pathology. However, the validity and reliability of measuring the inclination of the STJ axis of rotation (AoR) is not well established. This study aimed to develop a custom-made STJ locator (STJL) and evaluate its reliability and validity. To establish the reliability and validity of the measurement device for STJ AoR, 38 healthy male participants were recruited. For the reliability analysis, test–retest was used, and for validity analysis, Pearson’s correlation and Bland–Altman plot analyses were performed. In the reliability analysis of the STJL, a higher correlation was observed with the sagittal plane (0.930) and transverse plane (0.748) (standard error of measurement: 0.56–0.78; minimal detectable difference: 1.57–2.16). In the validity analysis between radiography and STJL, a significantly higher value of 0.798 was obtained with radiography (42.5) and STJL (43.5) with the sagittal plane. The custom-made STJL may be used in the clinical setting as its validity and intraclass correlation coefficient were high, indicating consistent measurements. Further studies including motion analysis are necessary to provide more information regarding the relationship between STJ AoR inclinations and STJ movements.

Original languageEnglish
Article number5494
JournalInternational journal of environmental research and public health
Issue number10
Publication statusPublished - 2021 May 2

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Validity and reliability of a novel instrument for the measurement of subtalar joint axis of rotation'. Together they form a unique fingerprint.

Cite this