Vanadium redox flow battery using electrocatalyst decorated with nitrogen-doped carbon nanotubes derived from metal-organic frameworks

Chanho Noh, Chang Soo Lee, Won Seok Chi, Yongjin Chung, Jong Hak Kim, Yongchai Kwon

Research output: Contribution to journalArticle

15 Citations (Scopus)


Highly porous zeolitic-imidazole frameworks (ZIFs) are synthesized to produce N-doped mesoporous carbon electrocatalysts via calcination. The N-doped carbon (m-NC) and carbon nanotubes (m-NCNT) are obtained from ZIF-8 and ZIF-67, while the core-shell structure of ZIF-8@ZIF-67 produced with ZIF-8 seeds (m-NC@NCNT) is prepared by hydrothermal method. Chemical and optical evaluations of the catalysts are characterized using BET, FT-IR, XPS, XRD, Raman spectroscopy and SEM/STEM and they are used as the catalysts for redox reactions of vanadium ions and redox flow battery (VRFB) performance. In the utilization, m-NC@NCNT and m-NCNT are effective for improving VO 2+ /VO 2 + redox reaction, although m-NC does not influence that. Even in VRFB tests using the catalysts, charge/discharge potential and energy efficiency (EE) of m-NC@NCNT and m-NCNT are highest, not to mention excellent EE resilience after undergoing tougher cycling condition. These results are due to the large graphitic-N portion of the two catalysts. Namely, electrons produced by the graphitic-N are delocalized, forming pi-conjugated system and vanadium–nitrogen transition state. This state then promotes electron transfer during VO 2+ /VO 2 + redox reaction and VRFB performance.

Original languageEnglish
Pages (from-to)A1388-A1399
JournalJournal of the Electrochemical Society
Issue number7
Publication statusPublished - 2018 Jan 1


All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Cite this