Variable-temperature structural studies of tetranatrolite from Mt. Saint-Hilaire: Synchrotron X-ray powder diffraction and Rietveld analysis

Yongjae Lee, Joseph A. Hriljac, Thomas Vogt

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The temperature-dependent evolution of the crystal structure of natural tetranatrolite (Mt. Saint-Hilaire, approximate formula Na5.85Ca1.90Al9.25Si10.75O 40·11H2O) was investigated using monochromatic synchrotron X-ray powder diffraction and Rietveld analysis. The room-temperature structural model reveals characteristic Al/Si and Na/Ca disordering over the framework tetrahedral and nonframework cation sites, respectively. Water molecules at the OW4 and OW5 sites along the elliptical channels surround the nonframework cations with full and partial occupancies, respectively, similar to what was observed in previous single crystal studies. As the temperature increases up to 300 °C, the partially occupied OW5 site is gradually dehydrated whereas the fully occupied OW4 site and the disordered Na/Ca site remain fully occupied. Upon complete dehydration of the OW5 site at 300 °C, another phase appears with ∼1.8% expansion and ∼6.7% reduction of the a- and c-axis parameters, respectively, leading to an overall volume reduction of ∼3.3%. In this new phase, the Na and Ca atoms migrate to occupy two closely separated sites along the channels, and 80% of the OW4 water is lost with the remaining water molecules occupying a site close to the previously empty OW5 site. The material decomposes upon full dehydration near 400 °C and becomes X-ray amorphous. The temperature-dependent variations of the T-O-T angles and the chain rotation angle are indicative of the framework relaxation occurring during the selective dehydration and subsequent cation-water migration phase transition.

Original languageEnglish
Pages (from-to)247-251
Number of pages5
JournalAmerican Mineralogist
Volume90
Issue number1
DOIs
Publication statusPublished - 2005 Jan 1

Fingerprint

Rietveld analysis
Synchrotrons
X ray powder diffraction
synchrotrons
Dehydration
X-ray diffraction
dehydration
Cations
Water
cation
diffraction
cations
water
x rays
temperature
Temperature
Molecules
phase transition
crystal structure
molecules

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Cite this

@article{40089cba9f0842ed8908bb90c65d1f07,
title = "Variable-temperature structural studies of tetranatrolite from Mt. Saint-Hilaire: Synchrotron X-ray powder diffraction and Rietveld analysis",
abstract = "The temperature-dependent evolution of the crystal structure of natural tetranatrolite (Mt. Saint-Hilaire, approximate formula Na5.85Ca1.90Al9.25Si10.75O 40·11H2O) was investigated using monochromatic synchrotron X-ray powder diffraction and Rietveld analysis. The room-temperature structural model reveals characteristic Al/Si and Na/Ca disordering over the framework tetrahedral and nonframework cation sites, respectively. Water molecules at the OW4 and OW5 sites along the elliptical channels surround the nonframework cations with full and partial occupancies, respectively, similar to what was observed in previous single crystal studies. As the temperature increases up to 300 °C, the partially occupied OW5 site is gradually dehydrated whereas the fully occupied OW4 site and the disordered Na/Ca site remain fully occupied. Upon complete dehydration of the OW5 site at 300 °C, another phase appears with ∼1.8{\%} expansion and ∼6.7{\%} reduction of the a- and c-axis parameters, respectively, leading to an overall volume reduction of ∼3.3{\%}. In this new phase, the Na and Ca atoms migrate to occupy two closely separated sites along the channels, and 80{\%} of the OW4 water is lost with the remaining water molecules occupying a site close to the previously empty OW5 site. The material decomposes upon full dehydration near 400 °C and becomes X-ray amorphous. The temperature-dependent variations of the T-O-T angles and the chain rotation angle are indicative of the framework relaxation occurring during the selective dehydration and subsequent cation-water migration phase transition.",
author = "Yongjae Lee and Hriljac, {Joseph A.} and Thomas Vogt",
year = "2005",
month = "1",
day = "1",
doi = "10.2138/am.2005.1696",
language = "English",
volume = "90",
pages = "247--251",
journal = "American Mineralogist",
issn = "0003-004X",
publisher = "Mineralogical Society of America",
number = "1",

}

Variable-temperature structural studies of tetranatrolite from Mt. Saint-Hilaire : Synchrotron X-ray powder diffraction and Rietveld analysis. / Lee, Yongjae; Hriljac, Joseph A.; Vogt, Thomas.

In: American Mineralogist, Vol. 90, No. 1, 01.01.2005, p. 247-251.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Variable-temperature structural studies of tetranatrolite from Mt. Saint-Hilaire

T2 - Synchrotron X-ray powder diffraction and Rietveld analysis

AU - Lee, Yongjae

AU - Hriljac, Joseph A.

AU - Vogt, Thomas

PY - 2005/1/1

Y1 - 2005/1/1

N2 - The temperature-dependent evolution of the crystal structure of natural tetranatrolite (Mt. Saint-Hilaire, approximate formula Na5.85Ca1.90Al9.25Si10.75O 40·11H2O) was investigated using monochromatic synchrotron X-ray powder diffraction and Rietveld analysis. The room-temperature structural model reveals characteristic Al/Si and Na/Ca disordering over the framework tetrahedral and nonframework cation sites, respectively. Water molecules at the OW4 and OW5 sites along the elliptical channels surround the nonframework cations with full and partial occupancies, respectively, similar to what was observed in previous single crystal studies. As the temperature increases up to 300 °C, the partially occupied OW5 site is gradually dehydrated whereas the fully occupied OW4 site and the disordered Na/Ca site remain fully occupied. Upon complete dehydration of the OW5 site at 300 °C, another phase appears with ∼1.8% expansion and ∼6.7% reduction of the a- and c-axis parameters, respectively, leading to an overall volume reduction of ∼3.3%. In this new phase, the Na and Ca atoms migrate to occupy two closely separated sites along the channels, and 80% of the OW4 water is lost with the remaining water molecules occupying a site close to the previously empty OW5 site. The material decomposes upon full dehydration near 400 °C and becomes X-ray amorphous. The temperature-dependent variations of the T-O-T angles and the chain rotation angle are indicative of the framework relaxation occurring during the selective dehydration and subsequent cation-water migration phase transition.

AB - The temperature-dependent evolution of the crystal structure of natural tetranatrolite (Mt. Saint-Hilaire, approximate formula Na5.85Ca1.90Al9.25Si10.75O 40·11H2O) was investigated using monochromatic synchrotron X-ray powder diffraction and Rietveld analysis. The room-temperature structural model reveals characteristic Al/Si and Na/Ca disordering over the framework tetrahedral and nonframework cation sites, respectively. Water molecules at the OW4 and OW5 sites along the elliptical channels surround the nonframework cations with full and partial occupancies, respectively, similar to what was observed in previous single crystal studies. As the temperature increases up to 300 °C, the partially occupied OW5 site is gradually dehydrated whereas the fully occupied OW4 site and the disordered Na/Ca site remain fully occupied. Upon complete dehydration of the OW5 site at 300 °C, another phase appears with ∼1.8% expansion and ∼6.7% reduction of the a- and c-axis parameters, respectively, leading to an overall volume reduction of ∼3.3%. In this new phase, the Na and Ca atoms migrate to occupy two closely separated sites along the channels, and 80% of the OW4 water is lost with the remaining water molecules occupying a site close to the previously empty OW5 site. The material decomposes upon full dehydration near 400 °C and becomes X-ray amorphous. The temperature-dependent variations of the T-O-T angles and the chain rotation angle are indicative of the framework relaxation occurring during the selective dehydration and subsequent cation-water migration phase transition.

UR - http://www.scopus.com/inward/record.url?scp=12444301837&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=12444301837&partnerID=8YFLogxK

U2 - 10.2138/am.2005.1696

DO - 10.2138/am.2005.1696

M3 - Article

AN - SCOPUS:12444301837

VL - 90

SP - 247

EP - 251

JO - American Mineralogist

JF - American Mineralogist

SN - 0003-004X

IS - 1

ER -