Video Object Detection via Object-Level Temporal Aggregation

Chun Han Yao, Chen Fang, Xiaohui Shen, Yangyue Wan, Ming Hsuan Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Citations (Scopus)

Abstract

While single-image object detectors can be naively applied to videos in a frame-by-frame fashion, the prediction is often temporally inconsistent. Moreover, the computation can be redundant since neighboring frames are inherently similar to each other. In this work we propose to improve video object detection via temporal aggregation. Specifically, a detection model is applied on sparse keyframes to handle new objects, occlusions, and rapid motions. We then use real-time trackers to exploit temporal cues and track the detected objects in the remaining frames, which enhances efficiency and temporal coherence. Object status at the bounding-box level is propagated across frames and updated by our aggregation modules. For keyframe scheduling, we propose adaptive policies using reinforcement learning and simple heuristics. The proposed framework achieves the state-of-the-art performance on the Imagenet VID 2015 dataset while running real-time on CPU. Extensive experiments are done to show the effectiveness of our training strategies and justify the model designs.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages160-177
Number of pages18
ISBN (Print)9783030585679
DOIs
Publication statusPublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 2020 Aug 232020 Aug 28

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12359 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period20/8/2320/8/28

Bibliographical note

Funding Information:
This work is supported in part by the NSF CAREER Grant #1149783.

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Video Object Detection via Object-Level Temporal Aggregation'. Together they form a unique fingerprint.

Cite this