Abstract
Porphyrin-based photodiode materials have mainly been targeted to achieve panchromatic absorption by maximizing the Soret- and Q-band absorption; however, they have rarely been studied with the purpose to make them wavelength-selective in photodetecting devices. In this study, we synthesized a wavelength-selective porphyrin material, PZn-FL, via Sonogashira coupling between an ethyne π-linked porphyrin core (PZn) and four fluorene (FL) moieties. The synthesized PZn-FL material showed a narrow full-width-at-half-maximum (FWHM) of 75 nm in the blue absorption region. The Q-band absorption of PZn-FL was significantly suppressed in organic photodiodes (OPDs), resulting in a blue-selective specific detectivity spectrum with a FWHM of 75 nm and a noise equivalent power of 2.86 × 10−12 W/Hz0.5. The planar backbone structure of PZn-FL was beneficial to increase charge transport and reduce bimolecular recombination, and the vertically oriented alkyl side chains of the PZn backbone contributed to prevent severe intermolecular aggregation and maintain a narrow absorption in film state.
Original language | English |
---|---|
Article number | 109531 |
Journal | Dyes and Pigments |
Volume | 193 |
DOIs | |
Publication status | Published - 2021 Sept |
Bibliographical note
Funding Information:The authors gratefully acknowledge support from a National Research Foundation (NRF) Grant funded by the Korean Government ( 2019R1A2C1089081 and 2020M3H4A3081816 ). This research was also supported by the National R&D Program through the NRF of Korea , funded by Ministry of Science and ICT ( 2020M3F3A2A03082631 ).
Publisher Copyright:
© 2021 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Chemical Engineering(all)
- Process Chemistry and Technology