TY - JOUR
T1 - Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells
AU - Kang, You Jin
AU - Park, Kwang Kyun
AU - Chung, Won Yoon
AU - Hwang, Jae Kwan
AU - Lee, Sang Kook
PY - 2009
Y1 - 2009
N2 - Xanthorrhizol is a sesquiterpenoid from the rhizome of Curcuma xanthorrhiza. In our previous studies, xanthorrhizol suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, inhibited cancer cell growth, and exerted an anti-metastatic effect in an animal model. However, the exact mechanisms for its inhibitory effects against cancer cell growth have not yet been fully elucidated. In the present study, we investigated the growth inhibitory effect of xanthorrhizol on cancer cells. Xanthorrhizol dose-dependently exerted antiproliferative effects against HCT116 human colon cancer cells. Xanthorrhizol also arrested cell cycle progression in the G0/G1 and G2/M phase and induced the increase of sub-G1 peaks. Cell cycle arrest was highly correlated with the downregulation of cyclin A, cyclin B1, and cyclin D1; cyclin-dependent kinase 1 (CDK1), CDK2, and CDK4; proliferating cell nuclear antigen; and inductions of p21 and p27, cyclin-dependent kinase inhibitors. The apoptosis by xanthorrhizol was markedly evidenced by induction of DNA fragmentation, release of cytochrome c, activation of caspases, and cleavage of poly-(ADP-ribose) polymerase. In addition, xanthorrhizol increased the expression and promoter activity of pro-apoptotic non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1). These findings provide one plausible mechanism for the growth inhibitory activity of xanthorrhizol against cancer cells.
AB - Xanthorrhizol is a sesquiterpenoid from the rhizome of Curcuma xanthorrhiza. In our previous studies, xanthorrhizol suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, inhibited cancer cell growth, and exerted an anti-metastatic effect in an animal model. However, the exact mechanisms for its inhibitory effects against cancer cell growth have not yet been fully elucidated. In the present study, we investigated the growth inhibitory effect of xanthorrhizol on cancer cells. Xanthorrhizol dose-dependently exerted antiproliferative effects against HCT116 human colon cancer cells. Xanthorrhizol also arrested cell cycle progression in the G0/G1 and G2/M phase and induced the increase of sub-G1 peaks. Cell cycle arrest was highly correlated with the downregulation of cyclin A, cyclin B1, and cyclin D1; cyclin-dependent kinase 1 (CDK1), CDK2, and CDK4; proliferating cell nuclear antigen; and inductions of p21 and p27, cyclin-dependent kinase inhibitors. The apoptosis by xanthorrhizol was markedly evidenced by induction of DNA fragmentation, release of cytochrome c, activation of caspases, and cleavage of poly-(ADP-ribose) polymerase. In addition, xanthorrhizol increased the expression and promoter activity of pro-apoptotic non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1). These findings provide one plausible mechanism for the growth inhibitory activity of xanthorrhizol against cancer cells.
UR - http://www.scopus.com/inward/record.url?scp=73349083967&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73349083967&partnerID=8YFLogxK
U2 - 10.1254/jphs.09141FP
DO - 10.1254/jphs.09141FP
M3 - Article
C2 - 19926935
AN - SCOPUS:73349083967
SN - 1347-8613
VL - 111
SP - 276
EP - 284
JO - Journal of Pharmacological Sciences
JF - Journal of Pharmacological Sciences
IS - 3
ER -